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Analysis of Crash Precursors on Instrumented Freeways 

CHRIS LEE, FRANK SACCOMANNO, AND BRUCE HELLINGA 

Department of Civil Engineering, University of Waterloo 

Waterloo, Ontario, N2L 3G1, Canada. 
 

This study examines a number of traffic flow characteristics that lead to crashes on urban freeways. Since these 

characteristics are observed prior to crash occurrence, they are referred to as "crash precursors". The objectives of 

the study are: 1) to explore factors contributing to changes in crash rate for individual vehicles travelling over an 

urban freeway; and 2) to develop a probabilistic model relating significant crash precursors to changes in crash 

potential. The data used to examine crash precursors were extracted from 38 loop detector stations on a 10-km 

stretch of the Gardiner Expressway in Toronto for a 13-month period. An aggregate log-linear model was developed 

relating crash rates to the selected crash precursors observed upstream of the crash site. The results of this analysis 

suggest that the variation of speed and traffic density are statistically significant predictors of crash frequency after 

controlling for road geometry, weather and time of day. Using the model, the study shows how crash potential can 

be established based on the precursors obtained from real-time traffic data.  

 

Over the past few decades, many local governments have implemented Instrumented Freeway Traffic Management 

Systems (IFTMS) in order to reduce freeway crashes. IFTMS allow traffic engineers to monitor real-time traffic 

flow data, provide information to motorists, and in some cases control the rate at which vehicles enter the freeway. 

A typical IFTMS consists of road sensors, surveillance cameras, variable message signs, automatic incident 

detection algorithms, and ramp meters.  

A number of researchers have explored the effectiveness of IFTMS in crash reduction. Olmstead (1) found that 

the IFTMS in Phoenix, Arizona reduced the frequency of crashes by 21~30%. A report from Minnesota Department 

of Transportation (2) revealed that urban freeway accidents could be reduced by 30%, implying that approximately 

900 accidents per year would be prevented by deploying automated freeway management. The case studies of the 

IFTMS in some European countries (3) showed that the use of advanced technologies such as variable speed limit, 

lane control signals and automatic queue detection can be very effective in decreasing overall accident rates. 
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Within an IFTMS, several control policies are performed to minimize traffic disruptions. Among them, timely 

detection of unexpected incidents – e.g. crashes, stopped cars, debris on the road – and the prompt implementation 

of incident clearance have been the key components of IFTMS in terms of improving safety. Clearly, this control 

policy helps reduce the delay and minimize the damages incurred by incidents. However, there has been little work 

done on how to use an IFTMS as a preemptive warning system rather than just a reactive system. The goal of a 

reactive system is to minimize the effects of an incident after it has occurred. The goal of a preemptive system is to 

identify, in real time, traffic conditions known to be associated with high crash frequency, and to intervene in such a 

way (e.g. variable speed limit) as to modify traffic conditions. In fact, the aforementioned case studies did not 

explicitly explain how a preemptive warning system could contribute to crash reduction. However, in order to 

examine the effectiveness of a preemptive warning system in crash reduction, we need to be able to predict crash 

potential on a real-time basis and identify the important conditions that lead to crashes before crashes actually occur. 

To predict crash potential, we need to develop freeway crash prediction models. However, many existing 

models cannot account for the impacts of variation in real-time traffic flow characteristics on crash occurrence. 

These models tend to be based on historical crash occurrence data and are used within the planning context to 

identify “black spots” for the purpose of identifying roadway segments requiring intervention measures (e.g. rumble 

strips, median barrier, etc.) 

Recent developments in Intelligent Transportation Systems (ITS) require prediction models that use real-time 

traffic flow data and have forward-looking perspective. They should be able to anticipate crash occurrence from the 

traffic flow conditions that are present prior to the occurrence of the crash. These traffic conditions are referred to in 

the literature as “crash precursors”.  

The study presented in this paper has two basic objectives: 1) to explore factors contributing to changes in crash 

potential prior to crashes for individual vehicles travelling over an urban freeway; and 2) to develop a probabilistic 

model relating significant precursors to changes in crash potential. In this paper, the term “crash potential” refers to 

long-term likelihood that a crash will occur for given traffic, environment, and roadway conditions. 

This paper is organized into six sections: The second section reviews the existing freeway crash prediction 

models and discusses the fundamental relationship between real-time traffic flow and crashes. The third section 

introduces the framework of the proposed crash prediction model and explains the variables used in the model. The 

fourth section describes the data used to evaluate the performance of the model. The fifth section shows the results 
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of model estimation and discusses the implications of the results. Finally, the conclusions and recommendations are 

presented. 

 

PAST STUDIES IN ANALYSIS OF FREEWAY CRASHES 

 

Statistical models have been widely used to analyze freeway crashes and to explain the relationship between crash 

involvement and traffic, geometric and environmental factors. These crash prediction models assumes that the 

number of crashes or crash rate is a linear function of several traffic environmental characteristics such as traffic 

flow, weather, road geometry, driving condition, etc. (4,5,6). Consequently, these models used linear regression to 

calibrate this linear relationship. 

However, linear regression assumes that the number of crashes is distributed normally. This assumption is not 

realistic because it fails to explain the random and discrete crash occurrence on freeways (7). Also, due to this 

assumption, linear regression cannot account for the non-negative nature of accident occurrence. Clearly, there is no 

clear reason to believe that the relationship is linear. 

To overcome these unrealistic assumptions, Poisson regression models were developed. Poisson regression 

assumes that the crashes are Poisson distributed with some expected value and the occurrences of crashes are 

independent to each other. For example, Hamerslag et al. (8) used this assumption to consider the probabilistic 

property of crash occurrence. Furthermore, Oppe (9) suggested that the additive assumption in a regression is not 

valid and a multiplicative model is more desirable in case that the effects of factors on crashes are mutually 

independent. In multiplicative models, the factors are converted to logarithmic terms and the relationship is 

expressed in a linear function of independent variables. This type of model is also called “log-linear model”. A 

number of studies have analyzed the crashes using a Poisson log-linear model (10, 11). 

However, these models mainly used a static measure of traffic flow data such as average annual daily traffic 

(AADT). Thus, they cannot consider the short-term variation of traffic flow in daily traffic and are not suitable for 

application to real-time operation of an IFTMS. 

This problem has motivated the use of real-time traffic flow data in the analysis of freeway crashes. The real-

time data can be effectively used to control vehicular flow, and furthermore reduce the crash potential. In an IFTMS, 

the data are normally obtained from road sensors such as inductive loop detectors which collect traffic flow data at 
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relatively short time intervals. In this regard, a number of researchers have examined the fundamental relationship 

between traffic flow characteristics and crashes using real-time data. Hughes and Council (12) suggested that 

“traffic flow changes” are more important than static measures of flow in the analysis of safety, and the variability in 

vehicle speeds was found to be the only measure affecting crashes. Corby and Saccomanno (13) concluded that the 

changes in speed provide the best indicator of flow disruption caused by crashes and this information could be used 

in early detection of crashes. Feng (14) drew a similar conclusion after reviewing some of the past studies on the 

relationship between speed and safety using real-time data. In order to improve safety, he suggested that speed 

variance should be reduced to encourage stable flow. Clearly, their findings imply that capturing the variation of 

operating speed on a real-time basis is important to predicting likelihood of crashes and analyzing the cause of 

crashes.  

So far, much of the work relating real-time traffic flow characteristics to its effectiveness in reducing freeway 

crashes has been descriptive in nature. There has been a little work done on the development of statistical models 

which describe this relationship quantitatively. One study that has presented statistical links between real-time traffic 

conditions and crashes was carried out by Oh et al. (15), in which lower overall speed variations were found to 

reduce the likelihood of freeway crashes. Although their findings are based on very limited number of samples, they 

demonstrated the potential capability of identifying the statistical relationship. 

 

MODEL FRAMEWORK 

 

This study expresses the crash frequency as a function of a variety of traffic and environmental characteristics. 

Based on previous studies (4-15), the important crash precursors and a number of control features were selected as 

independent variables. In general, the proposed crash prediction model takes the following form: 

 

Crash Frequency = f (variability of speed, density, road geometry, weather, time of day) 

 

Using this functional relationship, the model is calibrated using actual crash data and the effect of each variable on 

crash potential is examined. In the next subsection, each variable is described in detail. 
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Variables Used in the Model 

Crash precursors represent the traffic flow conditions prior to the crash occurrence. This information can be 

collected from archived loop detector data. In this study, two types of crash precursors were considered: 1) variation 

of speed and 2) traffic density. 

Variation of speed is measured by the coefficient of variation of speed (CVS) computed over an observation 

period with fixed duration. In this study, two types of CVS are estimated. The first CVS, CVS1, measures the 

average speed variation experienced by drivers on each lane as they travel from upstream to downstream as shown 

in Equation 1. 
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where, 

  *t  : actual time of crash; 

  t∆  : observation time slice duration (seconds); 

is )(σ  : standard deviation of speed on lane i computed over period t∆ ; 

   is  : average speed on lane i computed over period t∆ (km/hour); 

    p  : polling interval of loop detectors (seconds); 

 )(tsi  : speed on lane i at time t (km/hour); 

    n  : total number of lanes. 

 

The second measure, CVS2, is the average variation of speed difference across lanes as shown in Equation 2: 
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* Lane i and lane i+1 are adjacent lanes. 

 

Traffic density is also an important crash precursor as it represents average spacing or time/distance headway 

between two vehicles. Unlike speed, the density at the instant the crash occurs is used instead of the variation of 

density over time because the density just before the crash has a more dominant effect on the crash occurrence. The 

density (D) measured in vehicles/km is estimated from speed and volume using Equation 3. 
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where, 

*)(tvi  : volume on lane i at the time of crash (vehicle/hour); 

*)(tsi  : speed on lane i at the time of crash (km/hour).  

 

In addition to these crash precursors, three external control factors are also considered. Road geometry is 

included because it affects the number of lane changes. These lane changes are mandatory for some vehicles in the 

following cases: 1) when the vehicles enter from on-ramps and merge with main traffic stream; 2) when the vehicles 

enter the exclusive diverging lane(s) in order to exit; and 3) when the number of lanes is reduced or increased. 

Therefore, in order to consider the impact of lane changes, freeway crashes are divided into two categories: 1) 

crashes that occurred on a roadway section having the same number of lanes at both the upstream and downstream 

boundaries and not containing any on-ramps or off-ramps; 2) crashes that occurred on a roadway section with 

changes in the number of lanes or containing on-ramps or off-ramps. 

The weather effect reflects the road condition and visibility of drivers. In this study, the weather effects are 

simply classified into normal and adverse weather conditions. Adverse weather conditions are defined as the traffic 

conditions when it rains or snows – road surface is wet or icy, and drivers generally have poor visibility. 
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Time of day reflects the congested traffic conditions that are experienced during commuting peak periods. As 

sum, time of day is classified in peak and off peak. The peak period can be determined from the distribution of 

hourly traffic volume such that the hourly traffic volumes are relatively higher than volumes in other time periods. 

 

Crash Prediction Model 

With these variables, a crash prediction model was developed using a log-linear analysis. The log-linear model 

allows us to investigate the nature of the relationship between selected precursors and frequency of crashes adjusted 

by the appropriate level of exposure. The distribution of crash frequency is assumed to follow the Poisson 

distribution because it is similar to the nature of crashes – discrete and non-negative. All the independent variables 

except exposure are categorical variables. Exposure is continuous variable and is included as scalar covariate. This 

approach is aggregate in nature.  

Alternatively, binary logit model can be used for the crash prediction. In the model, the dependent variable is 

either crash or no crash, and all independent variables are continuous. However, there are two problems associated 

with the use of logit model in real-time crash prediction. One is the over-representation of no-crash data. Since the 

model uses the data measured in very refined time scale – e.g. 5-minute period, and the chances of crash occurrence 

within this time period are extremely low in daily traffic, the model results will be dominated by the effect of no-

crash data. The second problem is the difficulty with determining exposures for continuous traffic flow measures. In 

order to include exposure in the model, the traffic flow measures must be classified into a number of categorical 

variables. For these two reasons, a log-linear model was used instead of binary logit model. In this analysis, a first-

order log-linear model of crash prediction was developed as shown in Equation 4. 

 

)ln()ln( )()()()()()( 21
EXPF nWmRlPkDjCVSiCVS ⋅+++++++= βλλλλλλθ    (4)  

   

where, 

F  : the expected number of crashes over the analysis time frame; 

θ  : constant; 

)(1 iCVSλ  : effect of the coefficient of variation of speed along the road section (CVS1) having i levels; 
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)(2 jCVSλ  : effect of the coefficient of variation of speed difference across lanes (CVS2) having j levels; 

)(kDλ  : effect of density having k levels; 

)(lPλ  : effect of time of day having l levels; 

)(mRλ  : effect of road geometry having  m levels; 

)(nWλ  : effect of weather having n levels; 

EXP  : the exposure in vehicle-kilometers of travel. 

 

Exposure plays a significant and distinctive role in fitting the proposed crash prediction model. Exposure is 

expressed in terms of vehicle-kilometers of travel during observation time period. The product of AADT and the 

length of each road section are split into the volume-kilometers according to the proportions of the occurrence of 

independent variables in daily traffic. For example, if the weather condition was normal when certain crash has 

occurred, the average likelihood of having normal weather condition over a given observation time period was 

applied to the exposure for the crash. The exposure is estimated as shown in Equation 5. 

 

TLAADTWpPpDpCVSpCVSpEXP aaaaaaaa ⋅⋅⋅⋅⋅⋅⋅= )()()()()( 21    (5) 

 

where, 

aEXP  : exposure of the condition when crash a has occurred; 

)( 1aCVSp  : proportion of the level of CVS1 when crash a has occurred; 

)( 2aCVSp  : proportion of the level of CVS2 when crash a has occurred; 

)( aDp  : proportion of the level of density when crash a has occurred; 

)( aPp  : proportion of the peak period volume if crash a has occurred during the peak period.  

   Otherwise, proportion of the off-peak period volume; 

)( aWp  : proportion of normal weather condition if crash a has occurred in normal weather condition.   

   Otherwise, proportion of adverse weather condition; 

aAADT  : average annual daily traffic of the section on which crash a has occurred; 
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aL  : length of the road section on which crash a has occurred; 

T  : total observation time period. 

 

APPLICATION OF MODEL 

 

To test the performance of the proposed model, this study used incident logs and traffic flow data extracted from 

loop detectors along a 10-km stretch of the Gardiner Expressway in Toronto, Canada. A total of 38 loop detector 

stations were located along this stretch of freeway as shown in Figure 1. Among 38 detectors, 19 of them are located 

upstream of on-ramps/off-ramps or lane transition zones (lane increase/lane reduction). The remainders were located 

upstream of straight sections.  

These data were collected for weekdays over a 13-month period from January 1998 to January 1999. The reason 

for excluding weekends is that it is normally believed that the traffic pattern during weekends is quite different from 

the traffic pattern during weekdays – e.g. commuting trips. The traffic flow data from loop detectors include 

information on speed, volume and occupancy averaged over 20-second time slices.  

The incident logs provide information on lane block pattern, type of incident, date and time of detection and the 

location with respect to the nearest upstream loop detector. The incidents are first detected by the loop detectors 

based on a number of incident detection algorithms and subsequently confirmed visually by an operator at the traffic 

control center through closed-circuit TV camera feeds. Once the incident is confirmed, the operator classifies it into 

one of 18 types by primary cause, such as stopped car, debris on the road, construction, etc. In this study, we are 

concerned only with those incidents that can be classified as “reportable crashes”. In Ontario, reportable crashes 

accompany property damage of more than the threshold monetary value ($700) or presence of personal injury. In 

general, reportable crashes represent about 40% of all freeway incidents (13). 

A total of 234 crashes were reported to the traffic control center for the 13-month period considered in this 

analysis. To obtain more in-depth information concerning the causes and nature of these 234 crashes, we obtained 

supplementary police reports for 45 of these crashes cited in the incident log. Police reports provide information on 

specific location of each crash, number of vehicles involved, causes, underlying circumstances and nature of injuries 

sustained by each involved person. The incident log was matched to these reports based on the time and the location 

of crash occurrence. Although not all the crashes cited in the incident log could be matched to the police reports, we 
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obtained some very valuable insight as to the most common cause of crash on this freeway, which we could not 

obtain directly from the incident log. According to police reports, a majority of the crashes (88%) was classified as 

rear-end crashes, the most common type of crash on freeways. These crashes normally occur when the drivers of the 

following vehicles failed to respond quickly to avoid the downstream vehicles which were either stopped or slowing 

down quickly due to unexpected congestion. From this finding, it is evident that many crashes on this freeway are 

associated with abrupt changes in speed and can be avoided if drivers are warned of an impending queue ahead. 

From the distribution of hourly traffic volume of the study area, the peak period was set to 7~10 am in the 

morning and 4~7 pm in the afternoon. The proportion of daily volume during peak period was found to be 36%. For 

weather effect, the record of hourly variation of weather (16) at a weather station near the study area was obtained. 

The record contains the weather condition and temperature at each hour of the day and the precipitation of rainfall 

and snowfall. During the 13-month study period, 86% of hourly weather conditions were normal (i.e. no 

precipitation was recorded). 

 

Determination of Actual Time of Crashes 

In order to calculate the variation of speed and density, the actual time of crash occurrence needs to be determined 

first. However, the times noted in the incident logs and police reports reflect the time when the incident was reported 

or verified and do not correspond to the actual time of the crash. Based on previous work (13), we have assumed that 

the actual time of crash can be extrapolated from the analysis of changes in detector speed profiles.  

For example, as illustrated in Figure 2, Crash 4403 was reported in the incident log as having occurred at 

10:21:22 a.m. on July 28, 1998. However, analysis of the speed profile at the upstream detector indicates a sudden 

drop in the speed across all three lanes beginning at 10:19:20 a.m. We assume that this rapid drop in speed is due to 

the crash. In this case, we would set the time of crash at 10:19:20 a.m. This type of visual speed profile analysis was 

carried out for all 234 crashes in our sample to determine the actual time of crash occurrence. 

 

Categorization of Variables 

In establishing the contingency table for log-linear analysis, we considered how to establish the most appropriate 

categories for the factors. In this study, the degrees of speed variation and density were categorized as high, 
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moderate and low. The observation time slice duration prior to crash occurrence was set to 5 minutes. Since the 

variation of speed is very low under normal traffic condition, it is more likely to observe low variation than high 

variation in daily traffic. Assuming that the proportions of three levels of variation that occur in daily traffic are 50% 

(low), 30% (moderate) and 20% (high), the boundary values for each level were determined from 24-hour speed 

profiles for a typical day. 

For this task, 24-hour speed data were divided into 288 five-minute time periods. The quantity of CVS1 was 

calculated for each five-minute period and was categorized into one of three levels for the given boundary values. 

The boundary values were adjusted such that the proportions of three levels of variation are reasonably close to the 

aforementioned target proportions. As a result, the boundary values of CVS1 between low and moderate variation, 

and moderate and high variation were found to be 0.075 and 0.1, respectively. The boundary values of CVS2 and 

density were determined in the same manner. The classification of all categorical variables is summarized in Table 

1. Based on this categorization, the frequency of crashes was determined for different combinations of CVS1, CVS2 

and density with time of day, weather and road geometry controlled.  

To visually analyze the property of CVS1 and CVS2, two measures were calculated and plotted against 5-minute 

average and lane-by-lane speed data on July 20, 1998 when no crash has occurred. As shown in Figure 3, CVS1 

clearly reflects the sudden change in speed caused by non-recurrent congestion at a given location. As the 5-minute 

average speed sharply decreases, the CVS1 correspondingly increases. High CVS1 can take place at anytime during 

the day but it is noticeable during the peak period between 6 and 7:30 pm. Similarly, CVS2 reflects the change in 

speed difference across lanes as shown in Figure 4. As the fluctuation of speed difference between adjacent lanes 

increases, CVS2 increases accordingly. 

 

Determination of Exposure 

In determining exposure, the average traffic volume on the roadway section where the crash has occurred should be 

obtained. In this study, each road section is bounded by a pair of successive detector stations. Since we are more 

concerned with traffic conditions prior to the crash occurrence, traffic volume at the detector upstream of the crash 

site was used to establish the AADT. We observed that the AADT on all detector stations is almost uniform during 

weekdays in the study area. Thus it is reasonable to assume traffic volume on typical weekdays of the year as an 

estimate of the AADT on each section. Average AADT’s for different road sections were obtained and these 
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AADT’s were assumed to be valid for all other days. Once AADT was determined, the exposure was calculated 

using Equation 5. 

 

RESULTS AND DISCUSSIONS 

 

An iterative proportional fitting process yielded maximum likelihood estimates of the expected frequency of crashes 

from the log-linear model described in Equation 1. This fitting process continues until the difference between the 

current and previous estimates converges to a small value – in this case, 0.001.  

In order to evaluate the overall goodness-of-fit of the model, a Pearson chi-square test was performed. This test 

measures how close the expected frequencies are to the observed frequencies for any combination of crash 

precursors and control features. In terms of overall performance of the model, Pearson chi-square value was found to 

be low (224 for 205 degrees of freedom, p-value = 0.17) which means the difference between observed and 

predicted crash frequencies is not significant at a 95% significance level. In other words, this indicates that the 

model yields a good fit to the data. Also, since the over-dispersion parameter (= 224/205 = 1.1) is very close to 1, 

our assumption of Poisson distribution is valid.  

Table 2 summarizes the estimated parameters of the log-linear model. In Table 2, the cell of higher category 

value for each categorical variable was set as the “aliased” cell. This cell serves as the basis against which log-linear 

parameters are applied to obtain crash frequency for any combination of precursors. All factors were found to be 

significant at a 95% confidence level based on their Z-values. The constant tem in exponential expression (= exp(θ)) 

gives the crash frequency for base case factors (i.e. aliased cells of the contingency table) for a given exposure. 

From these results, we observed the followings: 

 

1. As the variation of speed along the section and the variation of speed difference across lanes increase, crashes 

are more likely to occur. This result reflects the fact that as the variation of speed increases, drivers have to 

adjust their speed more frequently and they are more likely to make misjudgment in keeping a safe separating 

distance from other cars. 
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2. As the density increases, crashes are more likely to occur. This result is reasonable from a theoretical standpoint 

because as average spacing between vehicles decreases, the chances of crashes will subsequently increase. 

 

3. Crashes are more likely to occur during the peak period than off-peak period. This is due to heavy traffic 

congestion during peak period, which induces more fluctuation of traffic flow. 

 

4. In the road sections with more frequent lane changes (i.e. merging and diverging sections), crashes are more 

likely to occur, compared to the straight sections. As vehicles are merging or diverging, the drivers have to 

change their lanes more frequently leading to increased risk of collision with other vehicles. 

 

5. In normal weather condition, crashes are more likely to occur. This result is inconsistent with our expectation. 

Two possible reasons for this result are: 1) The drivers traveling on this road generally pay less attention to their 

driving under ideal weather conditions whereas they tend to be more cautious in adverse weather conditions; 2) 

Some of the weather data used in the model may not represent real weather conditions at the time of crashes. 

Since weather data are available on an hourly basis, the data cannot capture the short-term variation of weather 

condition within one-hour period. This might have caused the overestimation of exposure measure under 

adverse weather condition. 

 

6. As the exposure increases, crashes are more likely to occur. In agreement with our prior expectation, the total 

number of crashes within a given category of crash precursors increases with vehicle-kilometers of travel. Also, 

since the estimated coefficient (β) is less than 1, the relationship between crash frequency and exposure is non-

linear. This result is reasonable because in reality, as traffic volume approaches to capacity, the rate of increase 

in crash frequency gradually decreases rather than remains constant. 

 

This model can be used to predict crash potential based on the current traffic flow conditions. For example, if 

the variation of speed (CVS1, CVS2) is observed to be high over the last 5-minute period, the density is high, the 

current time is during peak period, the road section is a merge section, and the exposure is 1,000,000 vehicles⋅km of 
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travels over a 13-month period, the expected frequency of crashes for these base case factors can be estimated as 

follows: 

 

( ))ln(exp 111333 21
EXPF RWPDCVSCVS ⋅+++++++= ====== βλλλλλλθ   

( ) crashes  8.3)1ln(2870.00000003386.1exp    =⋅+++++++=  

 

Once the frequency is estimated, the crash rate is obtained as follows: 
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Since crash rates represent the probability of observing crashes per unit vehicle-kilometer, the crash rates can be 

viewed as an objective measure of crash potential. From above expression, it is evident that as the variation of speed 

and the density increases, the crash potential also increases with all other external factors controlled. 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This paper has investigated the potential for crashes along a stretch of freeway as the function of real-time traffic 

flow characteristics called crash precursors. From the results of statistical analysis, we observed that the use of real-

time traffic data to predict crash potential on freeways is promising. In agreement with previous studies, high 

variation of speed and high density appear to be the most hazardous traffic condition leading to crashes. The results 

also indicate that external factors such as road geometry, weather and time of day must be controlled to examine 

pure effects of crash precursors on crash potential. 

The log-linear model developed in this study displays a number of advantages. First, the model is useful in 

observing general trends of crash potential in the function of selected categorical factors. Second, this model is able 

to account for exposure as a scalar covariate in the expression. Third, although we have presented a very simple 

formulation (single order factors), the model is also able to account for a number of higher order interaction terms in 
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explaining crash frequency. However, we were able to establish a parsimonious model that clearly relates crash 

potential to variation of traffic flow in real-time.  

This study provides meaningful insights into the effects of real-time traffic factors, obtained prior to crash 

occurrence, to provide an estimate of crash potential over time at different location. Loop detector data which are 

not readily available elsewhere provides an opportunity to assess this relationship over time. 

In future work, the model could be applied to driver warning systems which influence drivers’ behaviour to 

reduce the variation of speed. The warning information to drivers is based on the crash potential estimated by the 

model on a real-time basis. For example, if the current traffic condition is hazardous, the model will predict high 

crash potential and the warning information, e.g. maintain the speed at certain level, will be displayed to alert drivers 

a high risk of crashes. Assuming that all drivers follow the warning information, the traffic condition will be 

stabilized later. Then the model will predict low crash potential and the warning information will be withdrawn. 

However, the detailed strategy of reducing speed variance in real traffic situation is beyond the scope of this paper. 

Also, to improve the performance of the model, it is recommended that additional “potential” precursors such as the 

presence of a queue, the direction of shock wave (queue formation/dissipation) be investigated to reflect changes in 

traffic flow under congested traffic condition. 
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TABLE 1 Classification of Categorical Variables 

Variables Category Name Category 
Value Criteria 

Low 1 CVS1 <= 0.075 
Moderate 2 0.075 < CVS1 <= 0.1 

Longitudinal Variation of 
Speed (CVS1) High 3 CVS1 > 0.1 

Low 1 CVS2 <= 0.35 
Moderate 2 0.35 < CVS2 <=0.5 

Lateral Variation of Speed 
(CVS2) High 3 CVS2 > 0.5 

Low 1 D <= 15 
Moderate 2 15 < D <= 25 Density (D) 
High 3 D > 25 
Off-Peak Period 0 Time = 0-6 am, 10 am-4 pm, 7pm-12am 

Time of Day (P) 
Peak Period 1 Time = 7-10 am or 4-7 pm 
Straight Section 0 No on-ramp/off-ramp, No change in lanes 

Road Geometry (R) 
Merge/Diverge 1 On-ramp or off-ramp, change in lanes 
Normal 0 Clear  

Weather (W) 
Adverse 1 Rain, Snow 

 

TABLE 2 Estimated Parameters of Log-linear Model 

Parameters Estimate Standard Error* Z-Value** 
Constant (θ) 1.3386 .1985 6.74 

11 =CVSλ (CVS1 <= 0.075) -1.4307 .1903 -7.38 

21 =CVSλ  (0.075 < CVS1 <= 0.1) -1.2750 .1826 -6.98 

31 =CVSλ  (CVS1  > 0.1)*** 
0 . . 

12 =CVSλ ( CVS2  <= 0.35) -1.8417 .2300 -8.01 

22 =CVSλ  (0.35 < CVS2 <= 0.5) -.8271 .1508 -5.48 

32 =CVSλ  (CVS2  > 0.5)*** 
0 . . 

1=Dλ  (D  <= 15) -1.3911 .2097 -6.63 

2=Dλ  (15 < D <= 25) -.4289 .1498 -2.86 

3=Dλ  (D  > 25)*** 0 . . 

0=Pλ  (P  = 0) -.6049 .1437 -4.21 

1=Pλ  (P = 1)*** 0 . . 

0=Wλ  (W  = 0) .9648 .1765 5.47 

1=Wλ  (W  = 1) *** 0 . . 

0=Rλ  (R = 0) -.5271 .1356 -3.89 

1=Rλ  (R = 1)*** 0 . . 

β (Exposure) .2870 .1869 8.26 
*A measure of the dispersion of the coefficient. 
** A standardized measure of the parameter coefficient. 
***Aliased cells. 
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FIGURE 1  Schematic drawing of Gardiner Expressway and number of crashes 

 
Note: 

1. The arrows pointing outward indicate off-ramps and the arrows pointing inward indicate on-ramps. 
2. The letters inside the squares denote the station ID. 
3. The numbers shown above or below the station ID are the number of lanes. 
4. The numbers shown between two successive detectors are the distance in meter. 
5. Shaded detector stations are the stations where traffic is influenced by merging or diverging vehicles. 
6. The bold numbers shown above or below the distance are total number of crashes in 13 months. 
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FIGURE 2  Determination of actual time of crash occurrence based on detector data. 
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FIGURE 3  CVS1 at Station dw0080dwg (July 20, 1998). 
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FIGURE 4  CVS2 at Station dw0080dwg (July 20, 1998). 


