
Paper No. 01-2207

Comparative Assessment of AVI Tag Matching Algorithms for
Estimating Vehicle Travel Times

Bruce Hellinga, PhD, P.Eng.

Assistant Professor, Department of Civil Engineering
University of Waterloo, Waterloo Ontario Canada N2L 3G1

Phone: 519-888-4567 Ext. 2630
Fax: 519-888-6197

Email: bhellinga@uwaterloo.ca

Transportation Research Board
80th Annual Meeting
January 7 - 11, 2001

Washington, D.C.

Number of words = 5,425
Tables (1 x 250 words) = 250
Figures (8 x 250 words = 2,000
Total equivalent words = 7,675

mailto:bhellinga@uwaterloo.ca

Bruce Hellinga 2

ABSTRACT

This paper examines the computational complexity associated with three candidate AVI tag matching

algorithms that could be used to obtain individual vehicle travel time data in real-time. These

algorithms are suitable for application to a linear roadway facility using transponder tags that do not

have programmable memory. Analytical expressions are derived to estimate the worst-case and

average computational load associated with each algorithm. A simulation is performed to test the

validity of the assumptions made in these derivations, and also to perform a sensitivity analysis on

several key system parameters, including the rate of flow of AVI equipped vehicles, the mean travel

time between tag reader stations, the coefficient of variation of travel time, and the proportion of

vehicles that pass the upstream tag readers.

INTRODUCTION

Recent advances in short-range communication technologies and computing infrastructure have

enabled the development and deployment of a variety of automated vehicle identification (AVI)

systems. These systems are able to uniquely identify individual vehicles within a traffic stream,

usually through the use of a transponder or AVI tag that is affixed to the vehicle. AVI systems have

been deployed in North America for the purposes of electronic toll collection (e.g. Highway 407 in

Toronto, Canada; LeeWay ETC System in Lee County Florida (Burris and Byers, 1999), the

TRANSCOM system in New York and New Jersey (Mouskos et al, 1999)) and for the purposes of

obtaining real-time vehicle travel time data (e.g. the TransGuide system in San Antonio; the TranStar

system in Houston, Texas; the COMPASS system in Toronto) to support traffic management and

control.

Three general types (generations) of tag technologies currently exist. Type I tags are limited to

provide read-only communications, meaning that the tag is not capable of receiving and storing data.

Type I tags act only as a transmitter, broadcasting a unique tag identification code whenever

activated by a signal from a roadside tag reader unit. Type II and Type III tags have read and write

communication capabilities and are able to receive and store data in programmable memory. For

example, Type II and III tags are able to receive and store the identification code broadcast by a tag

reader and the time of the broadcast, and then re-transmit this information to the next tag reader

station that is encountered.

The estimation of individual vehicle travel times requires that vehicles equipped with tags be

uniquely identified at two locations and that the time (time stamp) associated with each identification

Bruce Hellinga 3

be known. For the travel times to be useful for traffic management purposes, it is also required that

the route taken by vehicles between each pair of tag reader locations be known.

The process of finding time stamp entries from two tag reader stations for the same vehicle is called

matching. When Type II or Type III tags are used, the matching of unique vehicles can be considered

a distributed process, as it takes place at each tag reader. When a vehicle equipped with a Type II or

Type III tag passes a tag reader, it transmits the time stamp and tag reader ID associated with the

tag’s previous tag reading transaction (i.e. roadside tag reader previously passed by the vehicle). The

tag reader then is able to determine immediately the vehicle’s travel time and the associated roadway

segment over which the vehicle has traveled.

However, when Type I tags are used, the matching process must be done centrally. Each tag reader

transaction consists of only a time stamp and vehicle (tag) ID. All tag readers transmit transaction

data to a central processing computer. This central computer is responsible for carrying out the

matching process. If the matching process is being conducted to compute vehicle travel times to

support traffic management and information provision, then the process must be conducted in real

time. If the travel time data (or identification of road segments traveled) are to be used solely for toll

billing or compilation of historical data, then the process need not be conducted in real time.

In this research, we consider the case in which Type I tags are used for the purpose of obtaining

travel time data to support real-time traffic management and/or information provision. We are

interested in estimating the computational complexity of the matching process associated with a

single pair of tag readers. Specifically, we examine the computational complexity of three different

matching algorithms. We also examine the sensitivity of the computational complexity to a number

of key systems parameters, including the traffic volume passing each tag reader, the mean and

variance of the travel time between tag reader stations, and the proportion of vehicles that pass one

but not both stations.

In the next section, we describe the three matching algorithms considered in this research. In the

following section we develop analytical expressions to estimate the average and worst-case

computation load associated with these algorithms for a general case. Using simulation, we quantify

the computation load of these three matching algorithms for a specific roadway and tag reader

geometry, and compare these results to those obtained from the analytical expressions. Finally, the

sensitivity of the computation load to several key traffic network characteristics is quantified.

Bruce Hellinga 4

MATCHING ALGORITHMS

Matching algorithms are normally considered to be a specific application of searching algorithms,

which attempt to find an item within a list of items. The field of searching and sorting algorithms has

become well developed over the past 40 years, with much of the current research motivated by the

need for greater computational efficiency for Intranet and Internet applications (e.g. internet search

engines, data routers, etc.), and data management.

While a wide range of searching and sorting algorithms have been developed, the choice of an

appropriate algorithm depends on the system application. Therefore, before describing the

algorithms that will be examined, we describe the AVI vehicle ID matching system.

System Description

Consider two tag reader stations, A and B, located on a single direction of roadway as shown in

Figure 1. Station A is located at the upstream end of the roadway segment. Station B is located at the

downstream end. As each AVI tag equipped vehicle passes a tag reader, a transaction record is

generated consisting of the vehicle tag ID, the time at which the transaction took place, and the tag

reader ID (A or B) at which the transaction occurred. As each record is generated, it is transmitted to

the central processing computer. We assume that the delay that occurs between the time that the

transaction takes place, and the time that the record is available for processing at the central

computer, is negligible or constant and therefore need not be considered. The central computer

maintains an active list (likely in memory, though this is not required) of transaction records

associated with tag reader A (List A). Each time a record associated with B is received, the central

computer initiated the matching process in order to determine the travel time associated with the

vehicle passing B.

We note, that because of the entry and exit ramps, vehicles passing A may not necessarily pass B and

those that pass B have not necessarily passed A. The probability that a vehicle passing B has also

passed A, and the probability that a vehicle passing A will also pass B, depend on the traffic demands

between origins 1 and 2 and destinations 3 and 4 (Equations 1 and 2). We ignore traffic demands

from origin 2 to destination 4 as these vehicles do not pass either A or B and therefore never generate

a transaction record at A or B.

3,23,1

3,1

DD
D

PBA +
= (1)

Bruce Hellinga 5

4,13,1

3,1

DD
D

PAB +
= (2)

where:

PBA = the probability that a vehicle generating a transaction record at B will have also generated

a transaction record at A

PAB = the probability that a vehicle that has generated a transaction record at A will have also

generated a transaction record at B

Di,j = traffic flow between origin i and destination j (vehicles per hour)

Method 1: Sequential Search Algorithm

In Method 1 we assume that the list of transaction records from tag reader A (List A) is maintained in

the order in which the records are received (i.e. chronological order). The problem of finding a

match for each record generated at B falls in the category of searching within an unsorted list, for

which the Sequential Search Algorithm (SSA) is the most common, and therefore is the one we select

in this research.

Thus, for Method 1, the computational load is solely associated with the size of List A as the

sequential search algorithm must be applied for each record generated at tag reader B.

Method 2: Modified Sequential Search Algorithm

Method 2 is a variation of the SSA described in Method 1 in which we attempt to reduce the number

of records in List A that must be examined. We make use of two characteristics of the tag matching

problem. First, vehicles require some minimum time to travel from reader A to reader B (tmin).

Second, List A is sorted in non-descending order with respect to the time at which each transaction

record was generated. Vehicles that generate an AVI tag record at B at time t, can not have passed tag

reader A any later than time t − tmin. Therefore, we maintain a dynamic pointer (p) that indicates the

last vehicle from List A that could have generated a record at B by the current time t.

To illustrate this method, consider Figure 2. List A contains the records generated by AVI vehicles

passing tag reader A. List B contains the records generated by AVI vehicles passing tag reader B. The

current time, t, is 14:34:23. The minimum time required for a vehicle to travel from tag reader A to

reader B is 3 minutes. List A contains n records with record generation times ranging from 14:26:13

to 14:34:03. Pointer p indicates the last record in List A for which the record generation time is less

Bruce Hellinga 6

than (t - tmin) = 14:31:23. All records in List A that follow pointer p (i.e. p < i ≤ n) have been

generated by vehicles that could not have reached tag reader B by the current time, t, and therefore do

not need to be examined.

Thus, for Method 2, the computational load is associated with the size of List A, the minimum travel

time between tag reader A and B, and the temporal distribution of vehicle arrivals at tag reader A.

Method 3: Binary Search Algorithm

Method 3 differs from Methods 1 and 2 in that we maintain List A as a sorted list with respect to the

vehicle tag ID. That is, each time a record is received from tag reader A, we insert this record into

List A such that records are maintained in non-descending order according to the tag ID. When List

A is a sorted list, we can use a search algorithm that is more efficient than the Sequential Search

Algorithm to find a match for vehicles that pass B. In this research we consider the popular Binary

Search Algorithm (BSA) (see for example Banachowski et al, 1991; or Baase, 1998).

Thus, for Method 3, the computational load is associated with two separate processes, namely

maintaining the order of List A and the use of the Binary Search Algorithm.

In the next section we develop analytical expressions to estimate the average computation load and

the worst-case computation load for both methods.

ANALYTICAL ASSESSMENT OF COMPUTATIONAL LOAD

Searching and sorting algorithms are typically compared on the basis of their computational

efficiency, that is the number of basic operations required to complete the desired task (i.e. sort

and/or search). Since the lists, to which these algorithms are applied, are generated by random

processes and the algorithms are applied repetitively, it is not particularly useful to compare

algorithm performance for a list containing a specific series of entries. Rather, the comparison is

typically conducted to determine the average and the maximum (worst case) number of computations

required to sort a list (List A) having n entries. We assume that X is the vehicle tag ID that was most

recently identified at tag reader B, and for which we seek to find an entry (a match) in List A.

When searching for X in a list, the basic operation can be considered to be a comparison of X with an

entry in the list. When sorting a list of numbers, the basic operation can be considered to a

comparison of two entries in the list. In this paper, we refer to a basic operation as a computation,

and consider a computation to be a single comparison between an entry of the list (List A) and the

Bruce Hellinga 7

value being searched for (X). Normally this comparison is implemented using an if …then…else

construct in a computer programming language.

Worst Case Analysis

Methods 1 and 2: SSA and Modified SSA

For Methods 1 and 2, the only computational load is associated with the Sequential Search

Algorithm. In the worst case analysis, the value being sought is located in the last position in List A

(i.e. at position n). Therefore, the maximum number of comparisons that can be required for a single

application of the SSA with a list having n entries, is n.

() () nnWnW == 21 (3)

where:

W1(n) = maximum number of comparisons associated with Method 1 for a list with n entries

W2(n) = maximum number of comparisons associated with Method 2 for a list with n entries

Method 3: Binary Search Algorithm

Method 3 consists of two stages, namely the sorting of List A, and then the searching of List A for

entry X. Sorting of List A is required to ensure that each time a new record is generated at tag reader

A, it is inserted into List A in a position such that all n records in List A are in non-descending order

by vehicle ID. This can be accomplished using a number of sorting algorithms. In this research, we

have chosen to use the Binary Insertion Sort Algorithm (BISA), a variation of the Binary Search

Algorithm, since this sorting method is computationally efficient and is particularly well suited to the

repetitive insertion of a single record into an already ordered list.

The second stage consists of conducting a search of List A for a vehicle tag ID X. Since List A is

sorted by vehicle tag ID, it is possible to use the Binary Search Algorithm (BSA) to locate X.

The BSA is based on the concept of “divide and conquer”. During each search iteration, a value

from the middle of the list is considered. If X is greater than this value, then the lower half of the list

(i.e. L1, L2, …, Ln/2) is eliminated from further consideration and the midpoint of the upper half of the

list if chosen for consideration in the next iteration. Thus, each time a comparison is made, one half

of the remaining list is eliminated from further consideration.

Bruce Hellinga 8

The maximum number of comparisons associated with a single application of the BSA can be shown

to be (Baase, 1988)

() () ()nWnW n
2222 log11 +=+= (4)

where:

W2(n) = maximum number of comparisons associated with Method 3 for a list with n entries

Analysis of Average Number of Computations

Method 1: Sequential Search Algorithm

The average number of comparisons depends on the number of entries in the list being searched (n)

and the probability that X = L(i). We assume that X is equally likely to be in any position in the list.

Furthermore, we assume that there is a probability PBA that X is in the list.

()()






+=−

≤≤==
11

1

niP

ni
n

P
iLXP

BA

BA
(5)

where:

X = value being search for

L(i) = entry at position i of list L.

n = number of entries in list L

PBA = probability that X is contained within list L

The average number of comparisons associated with any input I (i.e. set of list entries) can be

computed as the product of the probability that X is equal to L(i) and the number of comparisons

required when X is equal to L(i).

() ()()[] ()() nnLXPiiLXPnA
n

i
×+=+×== ∑

=

1
1

1 (6)

where:

A1(n) = expected average number of comparisons required to find X in a list of length n

Then, the average number of comparisons can be determined by substituting Equation 5 into 6 to

give Equation 7.

Bruce Hellinga 9

() ()∑
=

−+




 ×=

n

i
BA

BA nP
n

iPnA
1

1 1 (7)

Since

()
2

1
1

+=∑
=

nni
n

i
(8)

then

() () ()nPnPnA BABA −++= 112
1

1 (9)

Equation 9 provides an estimate of the average number of comparisons that must be performed for

each application of the SSA. Since this algorithm must be applied for each record generated at tag

reader B, the average number of comparisons that will need to be made when k records are generated

at B is

() () ()nkPnkPknA BABA −++= 11, 2
1

1 (10)

where:

A1(n,k) = expected average number of comparisons required to find X1, X2, …,Xk in List A having n

records

Method 2: Modified Sequential Search Algorithm

Method 2 differs from Method 1 in that knowledge of the minimum travel time between tag reader A

and B is used to define a subset of the n entries in List A. This subset consists of the first p records in

List A. As with Method 1, we assume that X is equally likely to be in any position in this truncated

list, and that there is a probability (1-PBA) that X is not in List A at all.

()()












+=−
≤<

≤≤

==
11

0

1

niP
nip

pi
p

P

iLXP

BA

BA

(11)

where:

X = value being search for

L(i) = entry at position i of list L.

n = number of entries in list L

Bruce Hellinga 10

p = number of entries in list L for which P(X=L(i)) > 0

PBA = probability that X is contained within list L

The calculation of a value for p depends on the average rate at which AVI equipped vehicles pass tag

reader A (VA) and the minimum travel time (tmin).






−= AVtnp

3600
min (12)

where:

p = number of entries in list L for which P(X=L(i)) > 0

tmin = minimum travel time from tag reader A to tag reader B (seconds)

VA = average rate at which AVI equipped vehicles pass tag reader A (vph)

Then, similar to the development shown for Method 1, the average number of comparisons can be

determined by Equation 13.

() () () kpkPpkPknA BABA +−++= 11, 2
1

2 (13)

where:

A2(n,k) = expected average number of comparisons required to find X1, X2, …,Xk in List A having n

records

The last term in Equation 13 reflects the computational load required to maintain the position of

pointer p. Each time a new record is generated at reader B, the pointer position is advanced within

List A. Thus, the total number of comparisons associated with this positioning is equal to k, the

number of records generated at B.

Method 3: Binary Search Algorithm

If we assume that X is equally likely to be found in any position in the list, then Equation 14

expresses the average number of comparisons required by the Binary Search Algorithm (BSA) to

find X in a list of length n (Baase, 1988). In Method 3 the BSA algorithm is applied each time a new

record is generated at tag reader A (to insert the record into the correct location in List A). The BSA is

also applied for each record generated at tag reader B to find the corresponding vehicle record at A.

If m is the number of records added to List A (i.e. the number of AVI tag reads at reader A), and k is

the number of records at B, then Equation 15 expresses the expected average number of comparisons

for Method 3.

Bruce Hellinga 11

() () 2
1

2log += nnA (14)

() () ()()2
1

23 log,, ++= nkmmknA (15)

Equation 15 assumes that there are n entries in List A at all times. The validity of this assumption is

likely to depend on the specific scenario being examined. Each time a new record is generated at A

another entry is added to List A and consequently n is increased by 1. However, each time a match is

found in List A, that record is deleted from List A, and n is decreased by 1.

SAMPLE APPLICATION

Consider a sample application in which 800 records are generated at tag reader A (m=800); 1000

records are generated at tag reader B (k=1000); on average 65 records are in List A (n=65); the

proportion of AVI equipped vehicles passing B that have also passed A is 0.8 (PBA=0.8), the

minimum travel time from tag reader A to B (tmin) is 126 seconds, and the average rate at which AVI

equipped vehicles pass tag reader A (VA) is 800 vph.

Equations 10, 13, and 15 can be used to estimate the associated average computational load for

Methods 1, 2, and 3 respectively (A1=39,400; A2 =23,600, and A3 = 11,740). Clearly these estimates

indicate that Method 3 provides significant benefits in reduced computational load.

A simulation study was performed to confirm the validity of the analytical expressions developed in

the previous section. AVI equipped vehicles were generated with exponentially distributed

headways. Vehicle travel times from tag reader A to tag reader B were assumed to follow a log-

normal distribution with a mean of 300 seconds and a standard deviation of 50 seconds. The same

traffic demands were used as were assumed for the application of the analytical expressions (i.e.

m=800; k=1000; and PBA=0.8). Note that for this analysis, all vehicles that pass reader A also pass

reader B (i.e. D1,4 = 0 and therefore PAB = 1.0). The consequences of PAB > 0 are examined later in

this paper.

Methods 1, 2 and 3 were applied to the time series of simulated AVI data. Ten repetitions of the

simulation were completed to provide an estimate of the average behavior. From these results, it was

found that the average number of comparisons required to process these data was 18,002 for Method

1, 13,720 for Method 2, and 10,448 for Method 3.

The number of comparisons predicted by the analytical expressions and the simulation experiment

differ by 54%, 42% and 11% of the analytical estimate for Methods 1, 2, and 3 respectively. These

large differences can be explained by two factors. First, and most significantly, the derivation of the

Bruce Hellinga 12

analytical expressions assumed that X (the vehicle being searched for) would be equally likely to be

found in any position within List A. Figure 3 illustrates the relative frequency distribution of the

position within the stack (List A) at which X is found. Since the number of entries in List A changes,

position is presented as relative position and is computed as i'/n, where i' is the record number at

which X is found, and n is the number of records in List A. These results show that X is not uniformly

distributed across all positions within List A, but is more likely to be found near the top of the stack.

For example, there is more than a 70% probability that X is found within the first 25% of the records

in List A. The large relative frequency (≈ 21%) associated with a relative position of 1.0 (i.e. the end

of the list) corresponds with X being found in the last record in the list and with X not being found in

the list at all (20% likely). Since X is more likely to be found near the beginning of the list, fewer

comparisons are required to find X, especially for the Sequential Search Algorithm (Methods 1 and

2).

The second factor is related to the number of records assumed to be in List A (i.e. n). For the

application of the analytical expressions, a value of n = 65 was chosen. In the simulation results, the

value of n is not constant, but changes with time as new records are generated at tag reader A and

added to List A, and as matches are found for tag reads at B and deleted from List A. Figure 4

illustrates the distribution of the number of records in List A for one of the individual simulation runs.

While the average number of records (n) in List A is 63, n ranges from a maximum of 78 to a

minimum of 1.

On the basis of these results it appears that the analytical expressions provided in Equations 10, 13

and 15 may over-estimate the computational load associated with AVI tag matching, particularly for

the Sequential Search Algorithm (Method 1) and the Modified Sequential Search Algorithm (Method

2).

SENSITIVITY ANALYSIS OF COMPUTATIONAL LOAD

In this section we examine the sensitivity of the AVI matching computation load as a function of 5

relevant system parameters, namely mean travel time between tag reader A and B (t), coefficient of

variation of travel time (COV), total traffic demand passing tag reader A (D = D1,3 + D1,4), the

probability that a vehicle generating a transaction record at B will have also generated a transaction

record at A (PBA), and the probability that a vehicle that has generated a transaction record at A will

have also generated a transaction record at tag reader B (PAB).

Bruce Hellinga 13

Table 1 provides the values of the parameters examined. The impact of varying the parameter values

was determined by simulating the application of Methods 1, 2, and 3 independently for each

parameter. For example, all simulations conducted to examine the impact of mean travel time used

default values for the remaining 4 parameters (i.e. COV = 0.10; D = 4000; PBA = 0.6; PAB = 1.0).

Mean Travel Time

The mean travel time between tag reader A and B directly influences the number of records that must

be maintained in List A, and consequently the computational load associated with the AVI matching

process. As expected, the results indicated that the number of records in List A increases linearly with

increases in the mean travel time. Correspondingly, the computation load associated with Methods 1,

2, and 3 increases nearly linearly as a function of mean travel time, albeit at a different rate for each

method. The rate of increase in computation load (measured as thousands of computations per 1-

minute increase in mean travel time) was 162, 71, and 1.9 for Methods 1, 2, and 3, respectively.

These results have two implications. First, the mean vehicle travel time between tag reader A and B

is determined by two factors, namely the distance between the readers and the level of traffic

congestion experienced on this section of roadway. The design of the AVI matching system should

account for both factors when assessing the expected computation load. Second, the computational

load of Methods 1 and 2 are much more sensitive to average stack size, and consequently the mean

travel time, than is Method 3.

Variation in Travel Time

Experimental results indicate that the variation of vehicle travel times about the mean travel time has

a much more limited impact on the computational load that does the mean travel time. Figure 5

illustrates the computational load associated with Methods 1, 2, and 3 as a function of the coefficient

of variation of vehicle travel times. COV values from 0.01 to 0.25 were examined, however, field

observations indicate that a value of 0.10 is typical. The results illustrated in Figure 5 indicate that

Method 2 is the most sensitive to the COV. When very little variance in travel times exist, Method 2

provides a computational load that is even smaller than that provided by Method 3. Physically, when

the variation in travel time becomes smaller, the minimum time required for vehicles to travel from

tag reader A to tag reader B approaches the mean travel time, and p (from Equation 12) becomes

smaller. Conversely, as the variation in travel time becomes larger, the minimum travel time

becomes very small and p approaches n, such that the computational load of Method 2 approaches

that of Method 1.

Bruce Hellinga 14

Method 1 is moderately sensitive to variation in travel time. When the COV is 0.25, the

computational load of Method 1 increases by 11% over the load at COV = .010. Method 3 is

insensitive to COV, with an increase of only 0.03% for COV=0.25 as compared to COV=0.10.

Traffic Demand Passing Tag Reader A

It is expected that the computational load is directly influenced by the total AVI equipped traffic

demand on the roadway. Figure 6 illustrates the computational load of Methods 1, 2 and 3 as a

function of the total AVI equipped traffic demand, D. The computational load of Method 1 increases

exponentially with increasing demand, while the computational load of Method 3 increases almost

linearly. At a demand of 1,000 vph, Method 1 has a computational load that is approximately 4 times

the computational load of Method 3. At a demand of 10,000 vph, the computational load of Method

1 is approximately 28 times that of Method 3. Method 2 provides a computational load that is

approximately midway between Methods 1 and 3.

Proportion of Vehicles Passing Reader B that have also Passed Reader A

If the roadway segment between tag reader A and tag reader B contains one or more on-ramps, then

not all of the vehicles passing tag reader B will have also passed tag reader A. Figure 7 illustrates the

computational load associated with Methods 1, 2, and 3 as a function of the proportion of vehicles

passing reader B that have also passed reader A. As PBA increases, then the computational load

decreases. These results are consistent with expectation, since for each vehicle that generates a

record at B, but does not generate a corresponding record at A, the AVI matching process must search

List A until no records remain before it can be concluded that a match cannot be found.

Proportion of Vehicles Passing Reader A that also Pass Reader B

If the roadway segment between tag reader A and tag reader B contains one or more off-ramps, then

not all of the vehicles passing tag reader A will also pass tag reader B. Figure 8 illustrates the

computational load associated with Methods 1, 2, and 3, as well as the average number of records in

List A and the number of vehicles passing tag reader B, as a function of the proportion of vehicles

passing reader A that also pass reader B. It is assumed that no mechanism is implemented to delete

records from List A, even if no matching record is ever generated at tag reader B. As PAB increases,

the computational load of Methods 1 and 2 initially increases, and then for PAB greater than

approximately 0.5, the computational load decreases. These results can be best understood by

examining the average number of records in List A, and the number of records generated at tag reader

Bruce Hellinga 15

B, as functions of PAB. The concave relationship of computational load versus PAB for Methods 1 and

2 is a result of the interaction between the number of matches that must be conducted (i.e. k), and the

number of records in the List A (n). As PAB increases, the number of records in List A decreases at a

non-linear rate, and the number of vehicles passing B increases at a linear rate. The computational

load is a function of both n and k, and consequently, there is a value for PAB (approximately 0.5) at

which the computation load is a maximum.

The assumption that records in List A for vehicles that do not pass tag reader B, are never deleted is

not realistic. In practice, some decision rule (usually a time-based heuristic) is used to determine if a

record in List A is likely to be an “unmatchable” record (i.e. a record for which a corresponding

record at the downstream tag reader station will not be generated). For example, a recent AVI

matching system deployed on Highways 427 and 409 in Toronto, Ontario, uses a travel time

threshold, T. If a match has not been found within T minutes, then the record is automatically deleted

from List A.

CONCLUSIONS AND RECOMMENDATIONS

The use of AVI tag technologies to obtain individual travel times requires the implementation of a

real-time AVI matching process. The choice of architecture and algorithms for this process has

significant bearing on the computation load experienced by the AVI matching computer. This paper

has identified three candidate AVI matching systems and has developed analytical expressions that

can be used to determine the maximum and average computational load associated with each. These

expressions are based on the assumption that the probability that the tag ID being searched for is

equally likely to be found in any one of the records in the list.

A simulation analysis of a typical AVI matching scenario has shown that this assumption is violated,

with the result that the analytical expressions over-estimate the expected computation load by as

much as 54% for the Sequential Search Algorithm, and 11% for the Binary Search Algorithm.

Both the analytical expressions and the simulation results indicate that Method 3 (sorting List A in

non-descending order by vehicle tag ID and applying the Binary Search Algorithm) is much more

computational efficient than either Method 1 (maintaining List A in chronological order and applying

the Sequential Search Algorithm) or Method 2 (maintaining List A in chronological order and

applying the Modified Sequential Search Algorithm).

Bruce Hellinga 16

A sensitivity analysis of five system parameters indicates that the most critical factors for influencing

computation load are number of AVI equipped vehicles, mean travel time between tag readers, and

the proportion of vehicles passing tag reader B that have also passed tag reader A (PBA).

REFERENCES

Baase, Sara (1988) “Computer Algorithms – Introduction to Design and Analysis, 2nd Edition”.
Published by Addison-Wesley Publishing Company.

Banachowski, L., Kreczmar, A., and Rytter, W. (1991) “Analysis of Algorithms and Data
Structures”. Published by Addison-Wesley Publishing Company.

Burris, M., and Byers, M. (1999) Customer Response to Lee County’s Electronic Toll Collection and
Variable Pricing Program, Presented at the 6th ITS Congress held in Toronto, Canada.

Mouskos, K., Niver, E., Batz, T., and Sadegh, A. (1999) Costs, Benefits and Institutional Issues of
the TRANSMIT System, Presented at the 6th ITS Congress held in Toronto, Canada.

Bruce Hellinga 17

List of Tables:

Table 1: Experimental Design Parameter Values

List of Figures:

Figure 1: Roadway and tag reader configuration

Figure 2: Modified Sequential Search Algorithm

Figure 3: Distribution of Position of X within List A

Figure 4: Distribution of the Number of records in List A

Figure 5: Computational load as a function of variation in vehicle travel time

Figure 6: Computation load as a function of AVI equipped traffic demand D

Figure 7: Computational load as a function of PBA

Figure 8: Computation load, stack size and number of vehicles passing reader B as a function of PAB

Bruce Hellinga 18

Table 1: Experimental Design Parameter Values

Parameter Values tested Default
Value

Mean travel time, t (minutes) {2, 4, 6, 8, 10, 15} {6}
Coefficient of Variation
(COV = std/mean)

{0.01, 0.05, 0.10, 0.15, 0.2, 0.25} {0.10}

Traffic Demand, D (vph) {1000, 2000, 4000, 6000, 8000, 10000} {4000}
Probability that vehicle passing B
will also have passed A, (PBA)

{0.2, 0.4, 0.6, 0.8, 1.0} {0.6}

Probability that a vehicle passing
A will also pass B, (PAB)

{0.2, 0.4, 0.6, 0.8, 1.0} {1.0}

Bruce Hellinga 19

1 3

2 4

Tag Reader A Tag Reader B

Figure 1: Roadway and tag reader configuration

Bruce Hellinga 20

Vehicle
ID

Record Generation
Time

1
2
3
4
.
.
.
p

p+1
.
.
.

n-1
n

List A

14:26:13
14:26:45
14:27:02
14:27:54

.

.

.
14:30:45
14:32:09.

.

.

.
14:33:21
14:34:03

List B
Vehicle

ID
Record Generation

Time
14:22:12
14:24:05
14:26:20
14:26:43

.

.

.
14:28:21
14:29:22.

.

.

.
14:32:08
14:34:23

1782
2903
9432
8031

.

.

.
8400
0265

.

.

.
1811
1965

1876
2203
8532
0831

.

.

.
4804
5026

.

.

.
1181
1665 Current Time t

tmin = 3 min.

Figure 2: Modified Sequential Search Algorithm

Bruce Hellinga 21

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Relative Position within Stack

R
el

at
iv

e
Fr

eq
ue

nc
y

Uniform Distribution

Figure 3: Distribution of Position of X within List A

Bruce Hellinga 22

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Records in List A

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 4: Distribution of the Number of records in List A

Bruce Hellinga 23

0

200

400

600

800

1,000

1,200

1,400

0 0.05 0.1 0.15 0.2 0.25
Coefficient of Variation

N
um

be
r o

f C
om

pu
ta

tio
ns

 (1
00

0'
s)

Method 1: Sequential Search Algorithm

Method 2: Modified Sequential Search Algorithm

Method 3: Binary Search Algorithm

Figure 5: Computational load as a function of variation in vehicle travel time

Bruce Hellinga 24

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Demand Passing Tag Reader A (vph)

N
um

be
r o

f C
om

pu
ta

tio
ns

 (1
00

0'
s)

Method 1: Sequential Search Algorithm

Method 2: Modified Sequential Search Algorithm
Method 3: Binary Search Algorithm

Figure 6: Computation load as a function of AVI equipped traffic demand D

Bruce Hellinga 25

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion of Vehicles Passing Reader B that have also Passed Reader A (Pba)

N
um

be
r o

f C
om

pu
ta

tio
ns

 (1
00

0'
s)

Method 1: Sequential Search Algorithm

Method 2: Modified Sequential Search Algorithm

Method 3: Binary Search Algorithm

Figure 7: Computational load as a function of PBA

Bruce Hellinga 26

0

500

1,000

1,500

2,000

2,500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion of Vehicles Passing Reader A that also Pass Reader B - P(ab)

N
um

be
r o

f C
om

pu
ta

tio
ns

 (1
00

0'
s)

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r o

f V
eh

ic
le

s

Method 1: Sequential Search Algorithm
Method 2: Modified Sequential Search Algorithm
Method 3: Binary Search Algorithm

Number of vehicles
passing tag reader B

Average number of
records in List A

Figure 8: Computation load, stack size, and number of vehicles passing reader B

 as a function of PAB

	INTRODUCTION
	MATCHING ALGORITHMS
	System Description
	Method 1: Sequential Search Algorithm
	Method 2: Modified Sequential Search Algorithm
	Method 3: Binary Search Algorithm

	ANALYTICAL ASSESSMENT OF COMPUTATIONAL LOAD
	Worst Case Analysis
	Methods 1 and 2: SSA and Modified SSA
	Method 3: Binary Search Algorithm

	Analysis of Average Number of Computations
	Method 1: Sequential Search Algorithm
	Method 2: Modified Sequential Search Algorithm
	Method 3: Binary Search Algorithm

	SAMPLE APPLICATION
	SENSITIVITY ANALYSIS OF COMPUTATIONAL LOAD
	Mean Travel Time
	Variation in Travel Time
	Traffic Demand Passing Tag Reader A
	Proportion of Vehicles Passing Reader B that have also Passed Reader A
	Proportion of Vehicles Passing Reader A that also Pass Reader B

	CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES

