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ABSTRACT

The recent emergence of automatic vehicle identification (AVI) technology for use in

electronic toll collection has provided an opportunity to develop automatic incident

detection (AID) methods that rely on individual vehicle travel time data rather than loop

detector data.

This paper examines the performance of three AVI based AID algorithms. Travel time data

for testing the algorithms was obtained by simulating a 12-km section of the collector

facility of Highway 401 in Toronto, Canada.  The results from the three AVI based AID

algorithms are compared to the performance of a leading loop detector based algorithm,

which was independently tested on similar simulated data.  The AID performance results

indicate that AVI based AID can provide similar incident detection performance as existing

loop detector based AID methods.

INTRODUCTION

Most urban freeways throughout North America are heavily utilised and experience ever

increasing congestion during the peak commuting periods.  Recurrent congestion results

from high traffic demands and limited roadway capacity.  Non-recurring congestion results

from the occurrence of unexpected events (incidents) such as collisions, stalled vehicles, or
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material spills. The U.S. Federal Highway Administration estimates that approximately

60% of travel time lost to congestion is a result of incidents and the percentage is believed

to be increasing (Lindley, 1987).

The early detection of incident events minimises the delay experienced by drivers, wasted

fuel, emissions, and lost productivity, and also reduces the likelihood of secondary

collisions.  The goal of automatic incident detection (AID) is to minimise the human

requirements in the efficient and effective detection of incident events.

The emergence of automatic vehicle identification (AVI) technology has provided a new

and previously unavailable form of real-time traffic data, namely individual vehicle travel

times.  This paper examines three freeway AID algorithms that rely on vehicle travel time

data obtained from AVI equipped vehicles.  The performance of these algorithms is

compared to a leading conventional AID algorithm that relies on data obtained from in-road

inductive loop detectors.

Nomenclature

i 20-second interval
j Road segment reference (section of roadway between 2 AVI antennae)
t time of day

τti segment travel time reported by an AVI equipped vehicle at time t during
interval i

ni number of AVI equipped vehicle reports received during interval i
δ duration of the comparison window
nδ number of intervals within comparison window of duration δ

iτ mean interval travel time for all AVI equipped vehicles in interval i

δτ mean of all mean interval travel times iτ  in comparison window

δvar variance of all mean interval travel times iτ  in comparison window

δσ log-normal variance of iτ  in comparison window

µδ log-normal mean of iτ  in comparison window

z z value associated with the level of confidence
ULi upper confidence limit for the mean travel time for interval i
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Structure of the Paper

The following section describes the network and the data that were used for testing the

proposed AVI algorithms.  This is followed by a description of the three proposed

algorithms.  Algorithm performance results are presented and compared to a conventional

loop detector based AID algorithm. In the last section, conclusions are made and

recommendations are provided.

DATA FOR EVALUATING THE PROPOSED AVI BASED AID ALGORITHMS

This section describes the simulated data and the different parameter values used to test and

calibrate the three proposed AVI based AID algorithms.  The data for testing the algorithms

was generated using a simulation model because no AVI field data were available. The use

of a simulation model also provides the following benefits:

1. Complete knowledge of true incident start and end times.

2. Control over the number, location, severity, and duration of incidents within the

evaluation data set.

3. Ability to test algorithm performance for a range of level of market penetration (LMP)

of AVI equipped vehicles.

Network Description

The network used in this study is modeled after eight interchanges along a 12-km freeway

section of Highway 401 in Toronto, Canada.  This facility experiences an average daily

traffic flow of approximately 340,000 vehicles, making it one of the most heavily traveled

freeways in North America.  This freeway section includes an express facility and parallel

collector facility.  Initial simulation results on this network exhibited unrealistic congestion

patterns, which were attributed to limitations in the model's route selection capabilities.

Consequently, the network was modified to provide only a single route from any origin to

any destination with the result that only the collector facility was modeled for this study. As

illustrated in Figure 1, the eastbound and westbound freeway directions are both divided
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into 10 segments approximately 1.2 km in length with AVI roadside antennas at both ends

of each segment.

The network was simulated using the Integration traffic simulation model (Van Aerde,

1998). The origin-destination traffic demand was constructed to replicate the build up of the

AM peak from 5:30 AM to 10:30 AM.  A total of 101,142 vehicle trips were simulated

during this 5 hour time period. The network experiences severe recurring congestion at

several locations during the simulation.  This permits the testing of AID during both

uncongested and congested traffic conditions.

As an AVI equipped vehicle passes a roadside antenna the vehicle is uniquely identified

through wireless communication between the vehicle’s transponder and the antenna.  Since

an AVI equipped vehicle can be uniquely identified, its travel time between antennas can

be calculated.  If a vehicle is not equipped with a transponder, the roadside antenna can not

communicate, and no data can be collected for the vehicle.

The simulation model permits tracking of the link travel times of individual vehicles.  The

model was run assuming travel times could be obtained for all vehicles. A post processor

was developed to combine the individual link travel times for each vehicle to produce a

travel time associated with each roadway segment between AVI antennas.  Travel time

reports were not created for vehicles that failed to pass the upstream antenna on a segment

(i.e. vehicle entered the segment via an onramp downstream of the antenna) or failed to

pass the downstream antenna on a segment (i.e. exited the freeway via an off-ramp

upstream of the antenna). The resulting data sets provided individual segment travel times

by time of day assuming all vehicles were equipped with AVI transponders. When the AVI

AID algorithms were tested, samples of vehicles were selected from this data set according

to the LMP assumed.  This time-series of data was considered representative of the time-

series of data that would be received by a traffic management centre in real-time.  Figure 2

illustrates typical individual vehicle segment travel time data obtained from the simulation

for vehicles traversing the westbound direction of Highway 401 between Highway 400 and
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Weston Road.  These data also illustrate the impact on vehicle travel times of an incident

that occurs on this segment from 7:30 AM to 7:40 AM.  The second peak in travel times

(between 8 and 9 AM) is a result of recurrent congestion.

Incident Data

In addition to the base non-incident case, twenty-four separate incident scenarios were

simulated, resulting in a total of 125 hours of simulated traffic conditions.  All the scenarios

used the same network and O-D demand characteristics.  However, each incident scenario

included the modelling of 5 unique incidents, for a total of 120 simulated incidents.  The

key characteristics of these 120 incidents were varied, included incident location (20

locations), duration (5, 10, 20, and 30 minutes), time of day (60 during peak and 60 during

off-peak), severity (100 single lane closures and 20 two-lane closures on roadways have

three lanes), and traffic conditions.

PROPOSED AVI BASED ALGORITHMS

Three algorithms have been developed for examination in this paper, the Confidence Limit

Algorithm, the Speed and Confidence Limit Algorithm, and the Dual Confidence Limit

Algorithm.  All algorithms are based on travel time data from AVI equipped vehicles. The

algorithms can be considered to be statistical time-series models.  The premise for all three

models is that the travel time experienced by vehicles over a section of roadway increases

more rapidly as a result of a change in capacity (i.e. such as the reduction in capacity that

results from the occurrence of an incident) than it does as a result of a change in demand.

Therefore, each of these algorithms attempts to characterise the mean and variance of the

travel times associated with the traffic conditions prior to an incident.  When an incident

occurs, the traffic situation from which the travel times result, is changed and the statistical

characteristics also change. Thus, the travel times resulting from traffic conditions prior to

an incident can be thought of as belonging to one population, and those from traffic

conditions after an incident has occurred, belonging to another population. The proposed

algorithms attempt to determine if reported travel times are outside of the confidence limits

associated with the current population, and if so, it is assumed that an incident has occurred.
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For all three algorithms, the individual AVI travel time reports were aggregated over 20-

second time intervals. Aggregation was carried out to reflect practical implementation

requirements.  If aggregation were not carried out, the AID algorithm would need to be

applied each time an AVI report was received.  For the data illustrated in Figure 2, a total of

13,307 AVI reports would be received for this section during the 5 hours of simulation if all

vehicles were AVI equipped.  This would mean the algorithm would need to be applied, on

average, every 0.5 seconds.  Furthermore, for multiple lane roadways, if two AVI equipped

vehicles passed the AVI antenna at the same time, the algorithm would need to be applied

twice during the same time instance.  Clearly this is not desirable.  An aggregation time

interval duration of 20-seconds was chosen as it corresponds to the polling frequency of

most loop detector systems.  Thus a mean AVI interval travel time (MITT) was computed

for each interval on the basis of all of the AVI travel time reports received during the

interval (Equation 1).  All algorithms were then applied to each roadway segment every 20-

second interval.  Figure 3 illustrates the resulting mean interval travel time data

corresponding to the individual vehicle travel time data illustrated in Figure 2 assuming

LMP = 10%.

∑
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Confidence Limit Algorithm

The Confidence Limit Algorithm characterises the time-dependent stochastic process on the

basis of recently acquired travel time data by computing the mean and variance of mean

interval travel times from the previous N intervals.  The mean interval travel times

contained within the previous N intervals is referred to as the comparison window. It is

assumed that the individual mean interval travel times are log normally distributed. The

log-normal mean (Equation 4) and variance (Equation 5) of the mean interval travel times

contained within the comparison window are used to establish an upper confidence limit for
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the mean segment travel time of the interval following the comparison window (Equation

6).  The validity of this approach relies on the assumption that the underlying mean of the

mean interval travel time distribution does not change during the comparison window and

the interval for which the confidence limit is being estimated.  The likelihood of this

assumption being violated increases as the duration of the comparison window increases.
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When performing AID in real-time, the mean interval travel time is calculated for the

current interval and is compared to the upper confidence limit calculated for the

corresponding comparison window. If the mean interval travel time (MITT) is greater than

its corresponding upper limit, it can be stated with a specified level of confidence (z) that

the current MITT has resulted from a process other than that associated with the conditions

experienced during the comparison window.  Consequently, it is assumed that an incident

has occurred.

A persistence check can be used so that an alarm is not called until a predefined number of

consecutive intervals have a mean interval travel time greater than the corresponding upper

confidence limit.  Figure 4 illustrates the application of the Confidence Limit Algorithm to

the mean interval travel time data depicted in Figure 3.
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Speed and Confidence Limit Algorithm

The Speed and Confidence Limit Algorithm is similar to the Confidence Limit Algorithm,

but requires the additional capability to capture vehicle speeds as they pass roadside

antennas.  The speed data does not have to be limited to the AVI equipped vehicles and can

be collected by a variety of different sources.  These sources include radar, wide area video

detection, or even inductive loop detectors.  In this research it has been assumed that speed

data are obtained from only AVI equipped vehicles.  The mean speed of AVI equipped

vehicles is calculated for each interval, as well as for the comparison window.

When an incident occurs, the capacity at that location decreases.  The decreased capacity at

an incident is likely to create congestion upstream of the incident and reduce the flow

downstream of the incident.  The decrease in flow downstream is in turn likely to allow an

increase in speed downstream.  Therefore, if an incident occurs on a segment it is likely that

the speed of the vehicles exiting the segment will increase.

Using the same process as the Confidence Limit Algorithm, the Speed and Confidence Limit

Algorithm determines whether a mean interval travel time is greater than the corresponding

confidence limit. If the mean interval travel time exceeds the confidence limit, then an

alarm is called only if the mean speed of vehicles exiting the segment during the interval is

greater than the mean vehicle speed for the comparison window.

Dual Confidence Limit Algorithm

The Dual Confidence Limit Algorithm differs from the Confidence Limit Algorithm in its

use of the comparison window. In the Confidence Limit Algorithm the comparison window

always includes the previous N intervals regardless of the outcome of the decision of

whether or not the mean interval travel time for the current interval is statistically part of

the comparison window population. The Dual Confidence Limit Algorithm attempts to

exclude mean interval travel times from the comparison window when these data exceed a

confidence limit threshold. Figure 5 illustrates this process.
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Figure 5 illustrates the mean interval travel time data previously illustrated in Figure 3

between 7:15 AM and 7:40 AM.  For this particular application of the algorithm, a

comparison window duration of 760 seconds (38 intervals) is used.  Two confidence limits,

the Window Limit and Alarm Limit, are computed on the basis of the data contained within

the comparison window.

When a mean interval travel time is greater than the Window Limit, then it is hypothesised

that this mean interval travel time belongs to a different population and consequently the

comparison window is not moved forward one interval when testing the next interval.  To

illustrate, consider mean interval travel time point A in Figure 5.  The mean interval travel

times contained within Comparison Window 1 are used to compute a Window Limit and

Alarm Limit.  Point A is greater than the Window Limit, but not the Alarm Limit, so no

alarm is declared, but the comparison window does not advance when assessing the next

interval (Point B).  Points B, C, D, E, and F are all greater than the Window Limit, so

Comparison Window 1 is used for all of these intervals.  A maximum stationary time of 8

interval was chosen. Thus, for interval G the maximum stationary time has been exceeded

and the window is advanced (Comparison Window 2).

Using the described logic, the Dual Confidence Limit Algorithm declares 5 alarms during

the 10-minute duration of the incident, compared to 8 alarms from the Confidence Limit

Algorithm (Figure 4).

Parameters Varied in Testing the Algorithms

For each level of market penetration the duration of the comparison window, the

confidence level and the number of persistence checks were varied.  As illustrated in Table

1, the initial testing of the algorithms was performed for a total of 27 different parameter

combinations for each level of market penetration.  Based on the results from these initial

tests, a second set of 27 parameter combinations (Table 1) was also tested for each level of

market penetration.
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RESULTS

The level of market penetration of AVI equipped vehicles on a facility can vary

significantly.  Therefore, the three proposed algorithms were each tested at 6 different

levels of market penetration (1%, 5%, 10%, 25%, 50% and 100%). A total of 54

combinations of the three control parameters (comparison window duration, confidence

limit, and persistence checks) were evaluated for each algorithm at each of the 6 levels of

market penetration.

Three primary measures of performance, namely detection rate (DR), false alarm rate

(FAR), and mean time to detect (MTTD) are used to evaluate AID algorithms.  The

detection rate is defined as the number of incidents correctly detected by the AID algorithm

divided by the total number of incidents known to have occurred during the observation

period. The off-line false alarm rate is calculated by dividing the number of false alarms by

the total number of alarm tests during the observation period. The mean time to detect is

computed as the average length of time between the start of the incident and the time the

alarm is initiated. When multiple alarms are declared for a single incident, only the first

correct alarm is used for computing the detection rate and the mean time to detect.

AVI Algorithm Results

Detection rate, false alarm rate, and mean time to detect were computed for 54 parameter

combinations for each level of market penetration for each algorithm.  Figure 6a illustrates

the detection rate versus false alarm rate for the Speed and Confidence Algorithm for a level

of market penetration of 10%.  It is clear from these results that a wide range of detection

rates can be obtained depending on the false alarm rate deemed acceptable.  For this

research, a maximum false alarm rate of 0.2% was considered acceptable. Therefore, the

performance of all algorithms was evaluated on the basis of maximising the detection rate

while ensuring the false alarm rate ≤ 0.2%.  Figure 6b illustrates the same performance

results as Figure 6a but for only those parameter combinations that provide a false alarm

rate of ≤ 0.2%.
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Table 2 provides a summary of the algorithm performance results for the parameter

combinations that provided the highest detection rate, while providing an off-line false

alarm rate of less than 0.2%, for each level of market penetration, for all three algorithms.

Figures 7a and 7b depict the associated detection rate and false alarm rate (expressed as the

number of false alarms per km per hour) respectively.

Comparison to Loop Detector Based AID Algorithms

The performance results provided in Table 2 can be compared to the performance provided

by leading loop detector based algorithms. A number of loop detector based algorithms

have been developed, including comparative algorithms such as the California Algorithms

(Payne and Tignor, 1978), and the McMaster Algorithm (Gall and Hall, 1989); neural

network algorithms (Ritchie and Cheu, 1993; Stephanedes and Liu, 1995); fuzzy logic

algorithms (Chang and Wong, 1994); and data smoothing algorithms (Chassiakos and

Stephanedes, 1993).

The McMaster Algorithm was chosen as the basis of comparison for this research for the

following reasons:

• The algorithm is currently being used by the Ministry of Transportation of Ontario as

part of the COMPASS freeway traffic management system along this section of

Highway 401 in Toronto.

• Previous research (Rakha and Van Aerde, 1996) compared the performance of the

McMaster Algorithm on Highway 401 using field data and simulation data using a

similar network.

The McMaster algorithm, developed by Dr. Fred Hall at McMaster University maps current

detector data on predefined regimes on the detector volume vs. occupancy domain.  Two

separate templates, defining the six flow-occupancy regimes, are used depending on the

location of the station with respect to recurring congestion.
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The McMaster algorithm has undergone comprehensive testing on two occasions on the

Queen Elizabeth Way (QEW) in Mississauga, Canada (Hall et al., 1993).  The first test was

conducted off-line using 39 days of field data and the second test was conducted on-line

over 64 days in 1992.  The off-line testing resulted in a detection rate of 60% at an off-line

false alarm rate of 0.001%, with a mean time to detect of approximately 2 minutes.  On-line

testing resulted in a detection rate of 68%, an off-line false alarm rate of 0.00078%, and a

mean time to detect of 2.1 minutes.  It should be noted however that a large number of

incidents that were not detected by the algorithm, were omitted from the analysis for a

variety of reasons.  Had these incidents been included in the analysis, the detection rate

would likely have been much lower.  It is not clear what impact including these incidents

would have had on the false alarm rate.

Independent testing of the McMaster algorithm was conducted on the same section of

Highway 401 in Toronto that was used in this paper (Rakha and Van Aerde, 1996).  This

section is also part of the Highway 401 COMPASS freeway traffic management system,

which uses the McMaster algorithm for AID.  It should be noted however that both the

collector and express facilities are included in the COMPASS system and were considered

for the independent testing, but only the collector facility is used in this research.  Rakha

and Van Aerde coded the McMaster algorithm based on information provided in the

literature (Gall and Hall, 1989; Hall et al., 1993) and therefore their algorithm may not

necessarily coincide directly with the proprietary McMaster logic used by the COMPASS

system at the time of their study.

The coded McMaster algorithm was calibrated and tested on one week (168 hours) of field

data obtained from the COMPASS system in order to verify that the performance of the

coded algorithm was consistent with the performance of the algorithm in the field for the

same data.  A comparison of the two algorithms can be found in Table 3.  A total of 26

incidents were included in the field data, and of these 26 incidents the coded McMaster

algorithm detected 10 incidents compared to 11 incidents detected by the McMaster

algorithm used by the COMPASS system in the field.  This is a difference of less than 4%
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in the detection rate.  The false alarm rates are also comparable. The difference in

performance of the McMaster algorithm on Highway 401 compared to the QEW is believed

to be due to the more complex nature of Highway 401.

The coded McMaster algorithm was then tested using 60 hours of simulated data from a

network based on the collector and freeway facilities of the same section of Highway 401.

The results of this test are also illustrated in Table 3 and were compared to the results from

the field data in order to verify that simulated data produced similar results.  The simulation

included 75 incidents during 60 hours, a shorter period than was used for testing with field

data, and therefore there were correspondingly fewer alarm checks.  It was concluded that

the performance of the coded McMaster algorithm was similar for both field data and

simulated data on the basis that the detection rates were within 2% of each other.  However,

the false alarm rate was much higher for the simulated data.  Two potential causes of this

discrepancy were identified.  First, the smaller amount of data (60 hours versus 168 hours)

resulted in a smaller denominator in computing the off-line false alarm rate for the

simulated versus field data.  Second, the larger number of incidents (75 versus 26 incidents)

resulted in more false alarms as a result of shockwaves that are generated by the incidents.

The simulated data used for testing the AVI based AID algorithms presented in this paper

(120 incident in 120 hours of data) was obtained from Integration, the same simulation

model used in the study by Rakha and Van Aerde.  It is speculated that the characteristics

of the simulated data that resulted in a much higher off-line false alarm rate in the work by

Rakha and Van Aerde, are also likely to increase the off-line false alarm rate results

obtained in this research.  Therefore, the performance of the coded McMaster algorithm on

simulated data, as reported by Rakha and Van Aerde, instead of field data is used as a

comparison for the results of the AVI based AID algorithms.

As illustrated in Table 2, the off-line false alarm rate for the McMaster algorithm is almost

an order of magnitude smaller than the results obtained in this study.  However, the

McMaster off-line false alarm rate is based on a greater number of alarm checks since the
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inductive loop detectors are spaced closer together than are the AVI roadside antennae

modelled for testing the AVI based algorithms.  In order to reasonably compare the results,

this off-line false alarm rate is converted to a value of false alarms (FA) per km, per hour

(FA/km/hr).  The network modelled for the coded McMaster algorithm was composed of

approximately 12 km of express facilities and 8 km of collector facilities, for a total

network length of 20 km in each direction (Rakha and Van Aerde, 1996).  The testing of

the coded McMaster algorithm on this network resulted in 473 FA during the 60 hours of

simulation.  This results in a false alarm rate of approximately 0.20 FA/km/h at a detection

rate of 37.3%.

The false alarm rate results of the AVI based algorithms presented in Table 2 have been

similarly converted, based on a total network length of 12 km in each direction and 120

hours of simulated data.

Discussion

Table 2 and Figure 7a indicate that the detection rates of the Speed and Confidence Limit

Algorithm are substantially higher than the other AVI algorithms and the McMaster

Algorithm for all levels of market penetration.  Figure 7b illustrates the corresponding false

alarm rates, indicating that for the parameter values chosen, approximately 75% of the

results produced higher false alarm rates than the McMaster algorithm. However, it should

be noted that while the false alarm rate is higher for many of the cases, the maximum false

alarm rate is only 0.3 FA/km/hr compared to the McMaster false alarm rate of 0.2

FA/km/hr.  In addition, the false alarm rates for the AVI algorithms are primarily dictated

by the cut-off value of 0.2% selected.  If a lower cut-off value had been selected, a lower

false alarm rate would have been obtained for all levels of market penetration, albeit at the

expense of a lower corresponding detection rate.

These results indicate that the addition of a vehicle speed check to the base Confidence

Limit Algorithm provides substantially better AID performance (almost twice the detection

rate) without an significant increase in the false alarm rate.
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Variability of Performance

The AVI algorithm results presented thus far reflect a single application of each algorithm

to the 120 hours of simulated traffic conditions for each parameter and level of market

penetration combination.  Since the algorithms rely on stochastic sampling, an investigation

was conducted into the sensitivity of algorithm performance as a function of this random

sampling.  The Speed and Confidence Limit Algorithm was applied 15 times to the 120

hours of data for each of the 6 levels of market penetration (comparison window duration =

900 seconds; confidence limit (z) = 2.5; persistence = 0).  For each application, a different

random sample of vehicles was assumed to be AVI equipped.  Figure 8 illustrates the

resulting variation in detection rate, false alarm rate, and mean time to detect.

Four observations can be made on the basis of Figure 8:

1. There is a significant improvement in detection rate as level of market penetration

increases from 1% to 5%.  There is an addition small improvement as the level of

market penetration increases to 10%.  Detection rate remains almost constant for levels

of market penetration greater than 10%.

2. As level of market penetration increases, the false alarm rate also increases.  This is

likely because at low levels of market penetration, the sample mean interval travel time

is a relatively inaccurate estimate of the true population interval travel time, thus

increasing the computed confidence limit and reducing the false alarm rate.

3. The mean time to detect decreases continuously with increasing level of market

penetration, with mean time to detect decreasing by approximately 35% with an

increase in level of market penetration from 1% to 25%.

4. The degree of variability of the results associated with random sampling does not

appear to be large, with an average coefficient of variation of approximately 0.09 for

detection rate, false alarm rate, and mean time to detect for all levels of market

penetration.

A primary operational advantage of the AVI based AID algorithms is that the surveillance

infrastructure can be maintained without lane closures and is not affected by pavement
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resurfacing, unlike loop detectors which generally require replacement after pavement

rehabilitation.

Furthermore, the collection of travel time data for AVI based AID can also be used as

primary inputs to ATIS.

CONCLUSIONS AND RECOMMENDATIONS

The research described in this paper provides the basis for the following conclusions:

1. Simulation models provide the opportunity to create engineered data sets for testing that

contain a defined number and type of incidents and traffic conditions.  Furthermore,

simulation models enable testing of algorithms under conditions (e.g. levels of market

penetration) that do not yet exist in the field.

2. Simulated data may contain unique characteristics that result in improved or

deteriorated AID algorithm performance, as compared to field performance.  However,

it is reasonable to expect that the performance of one algorithm relative to another

algorithm would remain consistent under simulated conditions and field conditions.

3. The Speed and Confidence Limit Algorithm provided the highest detection rate for all

levels of market penetration when compared with the other AVI algorithms.

Furthermore the detection rate and false alarm rate of the Speed and Confidence Limit

Algorithm are comparable to those of the loop-detector based McMaster Algorithm.

4. For the conditions examined within this paper, maximum detection rate was obtained

for a level of market penetration of 10%, while the mean time to detect continued to

decrease as the level of market penetration increased.

It is recommended that once available, field data be used to test and further develop AVI

based AID and that the impact of factors such as antennae placement be quantified.  It is
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also recommended that a comparative AVI algorithm be developed in which the conditions

of downstream segments are examined prior to declaring an alarm in order to determine if

the increase in travel time on the current segment is a result of queue spill-back from an

incident on a downstream segment.
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Figure 3: Sample mean interval travel time data for LMP = 10%

(WB between Hwy 400 and Weston Rd.)
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Figure 6: Detection Rate versus False Alarm Rate

(Speed and Confidence Limit Algorithm; LMP = 10%)
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Table 1: Algorithm Parameter Combinations Tested

Initial Set of Parameter Combinations

Dual Confidence LimitConfidence Limit Speed & Confidence
Limit Low High

Confidence Level (z) 1.28, 1.96, 3.08 1.28
1.28
1.96

1.96
3.08
3.08

Comparison Window
Duration (sec)

300, 600, 1800

Persistence Checks 0, 1, 2

Second set of Parameter Combinations

Dual Confidence LimitConfidence Limit Speed & Confidence
Limit Low High

Confidence Level (z) 2.5, 2.75, 3.25 2.5, 2.75, 3.25 1.5
2.0
2.5

3.5
3.5
3.5

Comparison Window
Duration (sec)

460, 760, 900 460, 760, 900 760, 900, 1200

Persistence Checks 0, 1, 2 0, 1, 2 1, 2, 3

Table 2 – AID Results as a Function of the Level of Market Penetration

LMP DR MTTD Off-line FAR
(%) (%) (minutes) (%) (FA/km/h) a

1 16 9.30 0.08 0.12
5 28 4.94 0.13 0.20
10 30 3.37 0.13 0.20
25 25 2.99 0.19 0.29
50 28 2.27 0.17 0.26

Confidence Limit
Algorithm

100 29 2.44 0.19 0.29
1 43 7.12 0.18 0.27
5 43 5.89 0.15 0.23
10 51 4.82 0.18 0.27
25 51 4.01 0.19 0.29
50 48 4.07 0.20 0.30

Speed and
Confidence Limit

Algorithm

100 39 2.94 0.13 0.20
1 24 8.70 0.19 0.29
5 28 4.48 0.16 0.24
10 32 4.14 0.17 0.26
25 27 3.08 0.15 0.23
50 30 2.93 0.20 0.30

Dual Confidence
Limit Algorithm

100 32 3.25 0.15 0.23
McMaster Algorithm N/A 37.3 b --- d 0.02 b 0.20 c

a FAR presented as false alarms per km of highway per hour.
b as reported by Rakha and Van Aerde,1996
c calculated based on data from Rakha and Van Aerde, 1996
d Rakha and Van Aerde, 1996 do not report MTTD.
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Table 3 – Comparison of Performance of the McMaster AID Algorithm on Field
Data and Simulated Data (Source: Rakha and Van Aerde, 1996)

Coded McMaster AlgorithmParameter COMPASS McMaster
Algorithm Field Data Field Data Simulated Data

Number of Incidents 26 26 75
Number of Incidents Detected 11 10 28
Number of False Alarms 225 287 473
Number of Tests 6,259,680 6,259,680 2,235,600
Detection Rate (DR) 42.3% 38.5% 37.3%
False Alarm Rate (FAR) 0.00407% 0.00458% 0.0212%


