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Abstract

The use of probe vehicles to provide estimates of link travel times has been suggested as a

means of obtaining travel times within signalized networks for use in advanced traveler information

systems (ATIS).  Previous research has shown that bias in arrival time distributions of probe vehicles

will lead to a systematic bias in the sample estimate of the mean.  This paper proposes a methodology

for reducing the effect of this bias.  The method, based on stratified sampling techniques, requires

that vehicle count data be obtained from an in-road loop detector or other traffic surveillance method.

The effectiveness of the methodology is illustrated using simulation results for a single intersection

approach and for an arterial corridor. The results for the single intersection approach indicate a

correlation (R2) between the biased estimate and the population mean of 0.61, and an improved

correlation between the proposed estimation method and the population mean of 0.81. Application of

the proposed method to the arterial corridor resulted in a reduction in the mean travel time error of

approximately 50%, further indicating that the proposed estimation method provides improved

accuracy over the typical method of computing the arithmetic mean of the probe reports.

Introduction

The successful wide scale deployment of Advanced Traveler Information Systems (ATIS)

and Advanced Traffic Management Systems (ATMS) depends on the ability to obtain and

subsequently disseminate information that accurately reflects network traffic conditions.  Many

different techniques for assessing traffic conditions have been proposed.  However, one method in

particular, namely the use of vehicles that are capable of transmitting link travel times to the traffic

management center, has received considerable attention.  The use of probe vehicles enables a sample

of the travel times experienced by all vehicles traversing the link to be obtained.  Previous research
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has examined how accurately probe vehicle travel times (sample) reflect the travel times of all the

vehicles (population) that traversed the link (Van Aerde et al, 1993; Srinivasan and Jovanis, 1996;

Turner and Holder, 1995; Boyce et al, 1991a, 1991b).  In each case, these researchers assumed that

probe reports represent an independent random sample from the traffic stream, and consequently, as

the number of probe reports received in a period increases, the sample mean approaches the

population mean.

Sen et al (1997a, 1997b) examined field data collected from probe vehicles as part of the

ADVANCE project.  On the basis of a statistical analysis of probe link travel times, they concluded

that probe reports are not independent and therefore regardless of the sample size, the sample mean

may not approach the population mean.

Recent work by Hellinga and Fu (1999) has demonstrated that the contradictory conclusions

reached by Van Aerde et al. (1993) and Sen et al. (1997a), are indeed both correct but each is

appropriate only for specific traffic and sampling conditions.  The authors also showed that bias in

the probe sample leads to a sample mean that does not asymptotically approach the population mean,

regardless of the sample size.  As a result of these earlier findings, this paper describes a

methodology for reducing the effect that sample bias has on the estimated mean travel time and

illustrates the application of this method using simulation data.

The next section describes the development of the method for estimating mean link travel

times in which the sample is biased. The effectiveness of this proposed method in reducing bias in

the estimated mean travel time is illustrated using simulation data for a single approach to a

signalized intersection. Following this, simulation data are used to illustrate the impact of the

proposed method for overcoming sample bias on a signalized arterial. Finally conclusions are made

regarding the importance of these findings for the design of probe based ATIS and ATMS.

Estimation of Expected Delay

This section proposes an estimator for the expected travel time experienced by a vehicle

traversing a signalized arterial link.  Previous research (Hellinga an Fu, 1999) has shown that the

mean travel time of the probe vehicles (the sub-population from which samples are taken for

estimation) is different from the mean travel time of all the vehicles (population) when the probe

vehicles represent a biased sample from the population.  The bias normally arises when the arrival

time distribution of the probes is not consistent with the arrival time distribution of the population.

The objective in this section is to develop a methodology for estimating the mean travel times of the
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population from the probe vehicle travel times in such a way that the impact of any sample bias is

removed or at least reduced.

The travel time that a vehicle experiences when traversing a signalized link consists of two

components, namely the running time and the delay caused by the signal control.  In the following

theoretical derivation, we assume that the mean running times of the probe vehicles and the general

vehicles are the same and therefore we consider only the difference in mean delay between probes

and all vehicles.

Notations

cy = cycle time (seconds)

g = effective green interval (seconds)

r = effective red interval (seconds)

λ = g/cy

pcu = passenger car unit

s = saturation flow rate (pcu/second)

ca = capacity (pcu/second), determined by sλ

q = average arrival flow rate during cycle time (pcu/second)

ρ = q/s

x = degree of saturation during the cycle time, defined as q/ca = ρ/λ

Pg = proportion of probe vehicles among all vehicles arriving during effective green interval

Pr = proportion of probe vehicles among all vehicles arriving during effective red interval

φ = ratio of the proportion of probe vehicle arrivals during the effective green interval to the
proportion of probe vehicle arrivals during the effective red interval, defined as φ =
Pg/Pr

δ = ratio of estimation error associated with biased approach to proposed approach

i = a time interval within the evaluation period

Ni = number of general vehicles arriving during interval i

NT = total number of general vehicles arriving during entire evaluation period

ni = number of probe vehicles arriving during interval i

np = number of probe vehicles arriving during the evaluation period

dji = delay experienced by probe vehicle j in interval i (sec)

dj = delay experienced by the jth probe vehicle during the evaluation period (sec)



Hellinga and Fu 4

Dp = estimate of mean delay of all vehicles computed on the basis of probe information

using traditional biased approach (sec)

D'p = estimate of mean delay of all vehicles computed on the basis of probe information

using the proposed approach (sec)

E[D]= expected delay for all vehicles (sec)

E[Dp]= expected delay for probe vehicles (sec)

E[D'p] = expected delay for all vehicles, determined on the basis of probe vehicle reports (sec)

Traditional Method of Estimating Population Delay

The traditional method of estimating population delay on the basis of probe information is to

compute the arithmetic mean probe delay from all probe reports received during the period of

interest, and to use this as an estimate of the expected population delay (Equation 1).
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While Equation 1 may provide a good estimate (depending on the number of probe reports

available) of the expected probe delay, previous research has shown that the expected probe delay

does not equal the expected population delay when the arrival time distribution of the probe vehicles

is not the same as the arrival time distribution of the population.  Thus, while Equation 1 is simple to

implement, it will provide biased results under certain conditions, conditions that are likely to occur

in practice.

Proposed Method of Estimating Population Delay

We propose the use of stratified sampling for estimating population mean delay on the basis

of probe reports.  Stratified sampling (e.g. Cochran, 1977) attempts to improve the accuracy of

estimates of population characteristics made on the basis of sample statistics, by dividing a

heterogeneous population into a number of sub-population, each of which exhibits a greater degree of

homogeneity than the population as a whole. Through stratified sampling, small samples from each

strata (sub-population) can provide precise estimates of the sub-population characteristics.  These

individual estimates can be combined to provide precise estimate for the whole population.

In our application, the population consists of all vehicles traversing a link during some time

period.  The sample is the probe vehicles. We wish to estimate the mean population delay. In

applying stratified random sampling, we cannot create strata by delay, since we cannot know the

portion of the population that experiences delays associated with a given delay strata.  However,
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delay at a signalized intersection is highly dependent on arrival time, and therefore, we can stratify

the population by arrival time to create sub-intervals within each period. The number of vehicles

arriving during each sub-interval can be obtained using loop detectors or some other vehicle

detection technology.  With this knowledge of population arrival time distribution, the estimate of

mean population delay is computed as the weighted average of the mean probe delay computed over

all sub-intervals.  Each probe mean is weighted by the relative frequency of population vehicle

arrivals during the interval (stratum weight).
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When only a single interval is considered (i.e. I = 1), then Equation 2 reverts to Equation 1

and provides the same bias as does Equation 1.  From stratified sampling theory, we know that, if in

every stratum (sub-interval) the sample estimate is unbiased, then D'p is an unbiased estimate of the

population delay (D).  Unfortunately, in practice we cannot be certain that the probe mean in each

sub-interval is an unbiased estimate.  Never-the-less, we contend that if I is greater than 1, then on

average, Equation 2 will provide a more accurate (less biased) estimate of the population mean delay

than will Equation 1. This is proved analytically in the following section for a specific case.

Analytical Comparison of Biased and Proposed Estimation Methods

Consider an idealized single-lane approach that is controlled by a traffic signal operating with

a fixed time signal plan. All vehicles are passenger cars and only through movements are permitted at

the signal. Vehicle arrivals and departures are deterministic. The population arrival rate is constant

and equal to q. Probe arrival rate during the red interval is equal to Prq and during the green interval

is equal to Pgq.

For a randomly selected vehicle, its expected delay can be determined from Equation 3, the

well known expression for uniform delay (see for example, Hurdle, 1984).
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As shown in Hellinga and Fu (1999), the expected delay for probe vehicles, E[Dp], is not

equal to the expected delay of the population (E[D]) as shown in Equation 4.
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As illustrated in Equation 4, the extent to which E[Dp] differs from E[D] depends on, among

other factors, the extent to which the probe arrival distribution differs from the arrival distribution of

the population.  When the arrival distributions are the same (i.e. φ = 1.0), then no bias exists and

E[Dp] = E[D].

Now if we divide the cycle length into three intervals (strata) as illustrated in Figure 1 (i = 1:

0 < t ≤ r/2; i = 2: r/2 < t ≤ tc; i = 3: tc < t ≤ cy), then following the derivation provided in Hellinga and

Fu (1999), the expected delay of a vehicle within each interval can be obtained on the basis of a

deterministic queuing model (Equation 5).
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The expected delay for the population based on probe information and the population arrival

distribution for each interval, can then be determined by substituting Equation 5 into Equation 2 to

produce Equation 6.
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We now show that the estimate based on three intervals (Equation 6) is always better than the

estimate based on a single interval (Equation 4).  To do so we define the estimate error ratio of these

two methods as follows.
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Based on the conditions 0 ≤ ρ ≤ 1.0, 0 ≤ λ ≤ 1.0, x=ρ/λ ≤ 1.0 and ρ ≤ x, the error ratio can be

reduced to
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If we substitute x = 1 into the numerator, then we can rewrite the equality of Equation 8 as
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Equation 9 can be further simplified by substituting ρ = 1 into the first term of the

denominator.
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The first term of Equation 10 can be shown to be always greater than or equal to 1 as x ≤ 1. In

the second term, x ≥ ρ, and therefore 0.1
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rewritten as
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Thus, we have shown that for this idealized deterministic situation, regardless of the degree

of bias, Equation 2 provides a smaller bias (though not necessarily a bias of zero) in the estimation of

the expected population mean delay than does Equation 1. It must be noted that in practice, Equation

2 can only be used to estimate the population mean delay if at least one probe report (dji) is available

for each interval i.

It must also be noted that in this derivation, probes represent a random unbiased sample only

in intervals 1 and 3.  In interval 2, probes represent a biased sample as the arrival distribution of

probes is different from the arrival distribution of the population. Therefore, in this application, the

use of stratified sampling is not guaranteed to provide an unbiased estimate.

The analytical method described above could be applied for some general number of

intervals (I > 1), and for non-uniform arrivals, however, the algebraic expressions become too

cumbersome to be of much value. Therefore, the next section uses simulation to quantify the

potential improvement in estimation accuracy of applying Equation 2 instead of Equation 1 to a

signalized intersection approach.

Application to a Single Intersection Approach

The previous section has demonstrated that when probes represent a biased sample of the

population of vehicles (i.e. probe arrival time distribution is not equal to the arrival time distribution

of all vehicles), then a reduction in estimation bias can be obtained by considering the arrival time

distribution of all vehicles. In the previous section it was shown that for a specific case (i.e.

deterministic uniform arrivals), the use of Equation 2 will always provide less (or equal) bias in the
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estimate of the population delay.  However, in this previous application, sampling error was not

considered, and it was assumed that vehicle arrivals were deterministic. In this section, we apply

Equation 2 to a single intersection approach having random arrivals and attempt to estimate mean

population delay over a 5-minute period.

A discrete cycle-by-cycle simulation model was developed to produce data on which to test

the relative accuracy of the traditional (Equation 1) and proposed (Equation 2) delay estimation

expressions.

The simulation model explicitly models the delay that a vehicle experiences when traversing

a two-lane signalised intersection approach.  The approach is used exclusively for through traffic and

controlled by a pre-timed traffic signal.  The vehicle arrivals are randomly distributed with the

vehicle headway following a shifted negative exponential distribution with a minimum headway

equal to 0.5 seconds. All vehicles are passenger car units.

The vehicle discharge pattern during the green interval depends on the queue status at the

approach.  If there is no queue present when a vehicle arrives, then the vehicle can be discharged

immediately without any delay.  Otherwise, the vehicle must wait until the queued vehicles ahead of

it are discharged.  The saturation flow rate is assumed to be constant at 1800 pcu/h for each lane,

which corresponds to a discharge headway of one second for the link. A cycle length of 100 seconds

was used.

For each execution of the simulation model, the delay experienced by all vehicles arriving

during a 5-minute period was recorded.  The start of the 5-minute recording period was randomly

selected between time zero and the cycle length, such that the start of the recording period did not

always correspond to the start of a cycle. The average delay of all vehicles arriving during the 5-

minute period provided the mean population delay (E[D]).  The cycle length was divided into only

two intervals, the first corresponding to the effective green period (i = 1) and the second to the

effective red period (i = 2). The mean of all probe vehicles arriving during the green interval (d1)

provided an estimate of the population mean for this interval (E[D1]), and d2 provided an estimate of

E[D2]. The number of general vehicles arriving during each period (N1 and N2) was also recorded.

Using these recorded values, Equations 1 and 2 were used to estimate the population mean delay.

A total of 7500 five-minute periods were simulated representing 375 combinations of signal

and probe parameter combinations. The set of green interval duration to cycle length ratios consisted

of three values (g/cy = {0.3, 0.5, 0.7}), and five degrees of saturation were considered (x = {0.5, 0.6,

0.7, 0.8, 0.9}).  Five values were examined for the proportion of probe vehicles within the green and

red intervals (Pg = {0.025, 0.05, 0.075, 0.1, 0.125}; Pr = {0.025, 0.05, 0.075, 0.1, 0.125}). For each
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combination of signal control parameters, the model was executed 20 times in order to capture the

stochastic variation.

The results presented in Figures 2 and 3 indicate that even when only very few intervals are

selected (i.e. 2), on average the proposed estimation method (Equation 2) provides a better estimate

of the mean population delay (R2 = 0.807) than does Equation 1 (R2 = 0.607).

Figure 4 illustrates the distribution of delay estimation error resulting from the use of the

traditional (Equation 1) and proposed (Equation 2) estimation methods. Error is determined as the

difference between the estimate and the true population delay as a proportion of the population delay.

The error distribution further indicates the superiority of the proposed estimate over the biased

estimate. The errors associated with the proposed method are more closely centered about zero, they

exhibit a smaller variance, and the distribution is not skewed.

Statistical testing was conducted to determine if the mean biased (Equation 1) and proposed

(Equation 2) estimation errors were significantly different from zero.  For each test, the null

hypothesis was that the mean estimation error was equal to zero.  The results of these tests, which are

provided in Table 1, indicate that the null hypothesis is accepted for the proposed estimation method,

but cannot be accepted for the biased estimation method.  This implies that although the proposed

estimation method (Equation 2) results in delay estimates that are subject to sampling errors, the

errors are not systematically biased and the mean of the error is not statistically different from zero.

The same cannot be said of the biased estimation method (Equation 1) as the results indicate a

systematic bias in the estimates.

While the previous results have indicated that the proposed estimation method (Equation 2)

provides better delay estimates on average than does the biased method (Equation 1), it is also of

value to examine the frequency distribution of cases in which the error associated with the proposed

method was smaller than the error associated with the biased method. Figure 5 illustrates the

cumulative frequency distribution of the absolute difference between the estimation error of the

proposed method and the estimation error of the biased method, as a fraction of the population delay.

Thus, positive values of error correspond to cases in which proposed method resulted in a larger

absolute estimation error than did the biased method.  Conversely, negative error values correspond

to cases when the absolute estimation error was smaller for the proposed method than the biased

method.  Figure 5 indicates that on average the absolute estimation error associated with the

proposed method, measured as a function of the population delay, was 16% smaller than the error

associated with the biased method.  For over 70% of the cases examined, the proposed estimation

method provided a smaller absolute estimation error than the biased method.  Furthermore, in over
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35% of the cases examined, the improvement in the accuracy of the delay estimate provided by the

proposed method, was in excess of 20% of the population delay.  Thus, it would appear that on the

basis of the cases examined, the proposed estimation method provides benefits over the biased

method in terms of the accuracy of the estimate of the population delay.

The next section demonstrates the impact of using the proposed method to estimate mean link

travel times for an arterial corridor.

Application to an Arterial Corridor

To illustrate the potential improvement in link travel time estimates that may be obtaining by

using the proposed estimation method (Equation 2) instead of the biased estimation method

(Equation 1), both methods were applied to a simple linear arterial corridor.  This application differs

from the single intersection approach application described in the previous section in that the arrival

distribution of probe vehicles is not explicitly specified, rather the proportion of probes travelling

between each origin-destination pair is defined.  The arrival distribution is then dependent on the

proportion of probes on each O-D path and the turning movements these probes need to make to

access the link being examined.

Network Description

The probe data and population data were obtained by modeling the network using the

INTEGRATION traffic simulation model (Van Aerde et al, 1996).  The network, illustrated in Figure

6, consists of a single arterial roadway that is intersected by two cross streets.  Each intersection is

controlled by a three-phase fixed-time signal having a cycle length of 120 seconds. Right-turns-on-

red are permitted.  The phasing scheme, green interval duration and the offset are presented in Figure

6.

The network is modeled for 2.5 hours with time varying demands.  Vehicles are generated at

all origin zones with negative exponentially distributed headways.  The O-D traffic demands between

each of the 6 zones and the temporal variation are provided in Table 2.

The time to traverse each link segment, the unique vehicle ID number, the time when the

vehicle departed the link (i.e. time of probe report), and the vehicle’s origin and destination were

recorded for each vehicle. This log represented the travel times experienced by the entire vehicle

population.

As demonstrated earlier in this paper, bias in probe estimates result when the arrival

distribution and consequently the delay, of the probe vehicles is not representative of the arrival
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distribution of the population of vehicles.  To demonstrate the potential advantages of using the

proposed method (Equation 2), we consider a scenario in which the level of market penetration

(LMP) of probe vehicles traversing segment 3 is biased with respect to arrival times.  The LMP of

vehicles from origin 1 that enter segment 3 (i.e. vehicles that make a through movement at

intersection A) is chosen to be 5%.  The LMP for vehicles from origin 6 (i.e. those making a left-turn

at intersection A) and from origin 2 (i.e. those making a right-turn at intersection A) entering segment

3 is chosen to be 25%.  Since segment travel time is also a function of the turning movement used to

exit the segment, only those vehicles traversing segment 3 that make a through movement at

intersection B are considered within this example.

Travel time estimates are made for 5-minute periods (30 periods in the 2.5 hour simulation).

To account for the randomness in the selection of vehicles as probes, the estimation process was

repeated 5 times, each time with a new random sample of probe vehicles.  Thus, a total of 150 (5

repetitions × 30 periods) estimates of the average vehicle travel time were made.

Each 5-minute period was divided into a number of intervals, I, for application of Equation 2.

Intervals were selected such that exactly 1 probe vehicle appeared within each interval.  Time

boundaries between intervals were determined as the midpoint between successive probe arrivals.

Figure 7 illustrates recorded vehicle travel times as a function of vehicle time of arrival on segment 3

for vehicles associated with period 7.  As illustrated in the figure, 7 probe vehicles have exited the

segment during the 7th time period and therefore, 7 intervals are used for calculating the travel time

estimate using Equation 2.  The interval boundaries are illustrated in Figure 7.

Figure 7 illustrates some vehicles with negative arrival times, implying that while the

vehicles departed the segment during the seventh 5-minute period, they actually entered segment 3

prior to the beginning of this period.

Table 3 illustrates the application of Equations 1 and 2 for the data illustrated in Figure 7 to

estimate the population mean travel times using the biased and proposed method. As indicated in

Table 3, each interval contains a single probe vehicle report.  When estimating the travel time using

the proposed method (Column A), each probe travel time is weighted by the fraction of the number of

general vehicles detected to enter the segment during the interval (Ni) divided by the total number of

vehicles detected to enter the segment during all of the intervals (NT). Thus, a probe travel time

associated with an interval during which a large portion of the general population vehicles arrived

(e.g. interval 1), has a much higher weighting than does a probe travel time associated with an

interval during which a small proportion of the vehicles arrived (e.g. interval 3). Conversely, the
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biased estimate (column B) applies a constant weighting of 1/np regardless of the population arrival

time distribution.

Aggregate Estimation Results

Table 4 provides the aggregate results for the population, proposed, and biased estimates of

mean segment travel time for all 150 estimation periods. An average 5-minute mean segment travel

time of 58.4 seconds is obtained using the biased estimation method, representing an average error of

(58.4 - 51.0) 7.4 seconds.  Conversely, when the proposed method is used, the average error is only

3.7 seconds, representing a 50% reduction in estimation error ((7.4 - 3.7)/7.4).  These results support

the conclusion made earlier that the proposed method provides a more accurate estimate of mean

segment travel times than does a simple arithmetic mean of the probe reports.

On the basis of sampling theory, it is expected that as the number of probe reports during a 5-

minute period increases, the accuracy of the estimated mean travel time will also increase.  However,

it has also been shown earlier in this paper that if a bias in sampling exists, then the biased method of

estimating mean link travel times (Equation 1) does not converge to the population mean travel time,

even when the proportion of probes is very high.  This is illustrated in Figure 8, which depicts the

mean estimation error, measured as the absolute difference between the estimated mean and the

population mean, divided by the population mean, as a function of the number of probe reports

received during the 5-minute period.  Results do not consider the 2 periods in which fewer than 2

probe reports were received.  Although substantial variation exists in the data, a general trend of

decreasing error with increasing number of probes is evident.  An exponential regression model was

fit to the data from the proposed and biased methods.  The regression models indicate that for the

network, traffic, and sampling conditions examined, when very few probe reports are received (e.g.

less than 5) during a 5-minute period, the errors associated with the biased and proposed methods are

approximately equal and are greater than 15% of the true population mean travel time.  However, as

the number of probe reports increase, the error associated with the proposed estimation method

reduces at a faster rate than does the error associated with the biased estimation method.

The importance of these findings is not in the absolute magnitude of the errors (or the

coefficients of the regression equations), but rather that the results further support the conclusions

that the proposed method of estimating mean link travel times provides an improvement over the

biased method that is most often used, in which the arithmetic mean of the probe reports is

calculated.



Hellinga and Fu 13

Sensitivity to Measurement Error

The previous analysis has assumed that no measurement error exists in the probe travel time

reports.  It is expected that if significant measurement error exists, then the use of only a single probe

report as an estimate of the population mean for an interval will result in substantial sampling error.

The robustness of the proposed estimation technique with respect to measurement error was tested by

adding a random error term to each probe report used in the previous analysis.  The error term was

normally distributed with a mean of zero and a known standard deviation, σ. Equations 1 and 2 were

applied to these data as before. Eight levels of error were considered such that the coefficient of

variation (standard deviation/mean) was approximately = (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and

0.6). All other aspects of the data and the application of the estimation methods remained the same as

previously.  Figure 9 illustrates the average relative estimation error as a function of the coefficient of

variation (COV) of the measurement error of the probe travel times.  As expected, the proposed

method provides a smaller average estimation error when the COV of probe measurement error is

equal to zero.  However, Figure 9 also indicates that the error associated with the proposed method

remains smaller than the error associated with the biased method until the coefficient of variation of

measurement error approaches 0.37.  The average probe travel time is approximately 57 seconds.

Thus, if travel times are normally distributed, then the standard deviation of probe travel times,

resulting from measurement error, would be equal to 21 seconds. It would seem highly unlikely that

a probe based data collection system, implemented in the field, would provide such a high level of

measurement error. It would be far more reasonable to assume that the system measurement errors

would be associated with a COV in the range of 0.1.  Regardless, the results in Figure 9 indicate that

the proposed estimation method remains superior to the biased method (Equation 1) over a wide

range of measurement error, up to and exceeding the range of error likely to be encountered within

field applications.

Conclusions and Recommendations

The successful wide-scale deployment of ATIS and ATMS requires the capability to obtain

accurate estimates of travel times over freeway and arterial roadway segments.  The use of probe

vehicles provides an opportunity to obtain individual vehicle travel times, however, these probes

represent only a sample of all vehicles traversing the roadway segment.

Arterial roadway segments are generally controlled by traffic signals at intersections.  The

variability in travel time that vehicles experience on an arterial roadway segment is largely
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determined by the amount of delay experienced at the downstream signal.  Delay at signals is largely

a function of the time of arrival with respect to the signal cycle.  Thus, if the probe vehicles represent

a biased sample with respect to their arrival time distribution, then even when data are available from

many probes, the mean probe travel time will not tend to the population travel time.

This paper has described another method of estimating population mean travel times even

when bias exists in the arrival time distribution. This method used the arrival time distribution of the

all vehicles (obtained from loop detectors or some other traffic surveillance method) to weight each

probe travel time report. On the basis of the simulation data, this method was shown to be more

accurate than the biased method. While the proposed method does not remove all error associated

with sampling bias, it is likely to be easy to implement in field conditions, and represents an

improvement over biased methods that are typically used. Furthermore, the method has been shown

to be superior to the traditional biased methods for the measurement error ranges that could be

expected within field implemented systems.

It is recommended that analytical expressions be developed that approximate the error

associated with the proposed and biased estimation methods as a function of signal timings, link

characteristics, traffic demands, estimation period duration, LMP and LMP bias.  These expressions

could then be used to quantify the error associated with specific link estimates, and also be used to

estimate the number of probe reports required to achieve a desired level of accuracy in travel time

estimates.
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Table 1: Testing significance of means of estimated delay
Biased Method

(Equation 1)
Proposed Method

(Equation 2)
Null Hypothesis (H0) Mean Error = 0 Mean Error = 0
Num. Observations a 5916 5916
Mean Error b 0.0761 -0.0018
Standard Deviation (sec) 0.4700 0.2467
Zcalculated 12.45 -0.5612
Zcritical (95% Confidence Limit) 1.96 1.96
Outcome Cannot Accept H0 Accept H0
a A total of 1584 periods did not have at least 1 probe report during both the red and
  green interval, and therefore, estimates using the proposed method could not be made.
b Error = (Estimate - Population)/Population

Table 2: O-D traffic demands for test network
Base OD Demand (vph) Temporal Variation

Origin
Zone

Destination Zone Period Time
(min.)

Proportion of
Base Demand

1 2 3 4 5 6
1 300 162 808 81 100 1 0 - 30 0.8
2 30 31 154 15 600 2 30 - 60 1.2
3 19 3 100 200 3 3 60 -90 1.6
4 920 120 150 200 160 4 90- 120 1.5
5 192 25 500 75 33 5 120 - 150 1.3
6 250 400 4 19 2

Table 3: Sample calculation of mean travel time using
biased and proposed estimation methods

Interval Probe Travel Time
(Sec)

Number of Vehicles Proposed
A

Biased
B

1 40.2 23 13.4 5.7
2 80.4 4 4.7 11.5
3 77.3 3 2.2 11.0
4 75.8 6 5.5 10.8
5 47.8 13 10.4 6.8
6 37.9 10 5.5 5.4
7 77.1 10 11.2 11.0

Total 69 53.7 62.4
A Probe Travel Time × Ni/NT
B Probe Travel Time × 1/7
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Table 4: Aggregate results for the estimation of mean 5-minute segment travel times
for the arterial corridor application

Population Proposed Method Biased Method

Mean (sec) 51.0 54.7 58.4
Standard Deviation (sec) 5.33 9.01 9.44
Maximum (sec) 63.80 89.23 86.69
Minimum (sec) 43.13 38.53 38.30
Number of 5-minute periods 150 150 150
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Figure 1: Deterministic queuing diagram
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Figure 3: Correlation of proposed delay estimate (Equation 2) with population mean
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