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ASSESSING THE EXPECTED ACCURACY OF PROBE
VEHICLE TRAVEL TIME REPORTS

By Bruce Hellinga P.Eng., 1 and Liping Fu 2

Abstract:

The use of probe vehicles to provide estimates of link travel times has been

suggested as a means of obtaining travel times within signalized networks for use

in advanced traveler information systems (ATIS).  Past research in the literature

has provided contradictory conclusions regarding the expected accuracy of these

probe based estimates, and consequently has estimated different levels of market

penetration of probe vehicles required to sustain accurate data within an ATIS.

This paper examines the effect of sampling bias on the accuracy of the probe

estimates.  An analytical expression is derived on the basis of queuing theory to

prove that bias in arrival time distributions and/or in the proportion of probes

associated with each link departure turning movement, will lead to a systematic

bias in the sample estimate of the mean delay.  Subsequently, the potential for and

impact of sampling bias on a signalized link is examined by simulating an arterial

corridor. The analytical derivation and the simulation analysis show that the

reliability of probe based average link travel times is highly affected by sampling

bias.  Furthermore, this analysis shows that the contradictory conclusions of

previous research are directly related to the presence or absence of sample bias.
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Introduction:

The successful wide scale deployment of Advanced Traveler Information

Systems (ATIS) and Advanced Traffic Management Systems (ATMS) depends

on the ability to obtain and subsequently disseminate information that accurately

reflects network traffic conditions.  Many different techniques for assessing traffic

conditions have been proposed.  However, one method in particular, namely the

use of vehicles that are capable of transmitting link travel times to the traffic

management center, has received considerable attention.  The use of probe

vehicles enables a sample of the travel times experienced by all vehicles

traversing the link to be obtained.  This paper examines the use of probe vehicles

on signalized links and addresses the critical question of “How accurately do the

probe vehicle travel times (sample) reflect the travel times of all the vehicles

(population) that traversed the link?”

A number of researchers have previously investigated the expected

reliability of probe travel time reports.  Van Aerde et al (1993) developed an

analytical expression for the reliability of probe travel times for signalized links

and verified these expressions using simulated data.  These expressions, which

assume that probe reports represent an independent random sample from the

traffic stream, indicate that as the number of probe reports in a period increases,

the sample mean approaches the population mean.

The same assumption was used by other researchers in determining the

required level of market penetration or number of probe vehicles (Srinivasan and

Jovanis, 1996; Turner and Holder, 1995; Boyce et al, 1991a, 1991b)

Sen et al (1997a, 1997b) examined field data collected from probe vehicles

as part of the ADVANCE project.  On the basis of a statistical analysis of probe

link travel times, they found that probe reports are not independent and therefore

regardless of the sample size, the sample mean does not approach the population
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mean.  They concluded that only “a small number of probe reports within a 5-

minute interval yields a standard error that is not substantially improved by

making the number of probes much larger”.

The conclusions reached by Van Aerde et al. (1993) and Sen et al. (1997)

appear to be contradictory.  This paper will show that both results are indeed

correct but each is appropriate only for specific traffic and sampling conditions,

and neither result can be held as a generalization for all traffic network conditions.

The remainder of this paper consists of three components.  In the next

section it is shown from fundamental queuing theory, that bias in the probe

sample leads to a sample mean that does not asymptotically approach the

population mean, regardless of the sample size.  Following this, simulation data

are used to illustrate the impact of sample bias on a signalized arterial. Finally

conclusions are made regarding the importance of these findings for the design of

probe based ATIS and ATMS.

Analytical Estimation of the Expected Delay of Probe Vehicles:

This section provides a theoretical estimate of the mean travel time

experienced by a probe vehicle traversing a signalized arterial link.  The objective

is to show that the mean travel time of the probe vehicles (the sub-population

from which samples are taken for estimation) may be different from the mean

travel time of all the vehicles (population).  The travel time that a vehicle

experiences when traversing a signalized link consists of two components, namely

the running time and the delay caused by the signal control.  In the following

theoretical derivation, we will assume that the mean running times of the probe

vehicles and the general vehicles are the same and therefore we will focus on the

difference in mean delay between probes and all vehicles.
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Assumptions and Notations

The delay that a probe vehicle experiences when it travels through a

signalized approach depends on a number of factors including the arrival flow rate

and distribution, signal timings and the time when the vehicle arrives at the

approach.  In a real application environment, many of these factors are random

variables. As a result, the travel time reported by probe vehicles would likely be

subject to large variation. For the purpose of illustrating the effect of sample bias,

we will consider an idealized intersection approach consisting of a single through

lane controlled by a signal with known timings.  The approach has unlimited

space for queuing and has a constant saturation flow rate.  Furthermore, it is

assumed that vehicle arrivals at the approach are uniformly distributed and consist

only of passenger car units (pcu).  The other notations are described as follows:

Signal Timing Parameters
cy  = cycle time (seconds)
g = effective green interval (seconds)
r = effective red interval (seconds)
λ = g/cy

Arrival Flow
qg    = average arrival flow rate during effective green interval (pcu/second).
qr    = average arrival flow rate during effective red interval (pcu/second).
q    = average arrival flow rate during cycle time (pcu/second).  Defined as

y

rg

c

rqgq
q

⋅+⋅
=

(1)

Capacity
s    = saturation flow rate (pcu/second).
ca = capacity (pcu/second), determined by sλ
x = degree of saturation during the cycle time, defined as q/ca

Probe Vehicle Flow
Pg    = proportion of probe vehicles among all vehicles arriving during

effective green interval.  The probe arrival rate during effective green
interval is therefore qg

.Pg (probe pcu/second)
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Pr  = proportion of probe vehicles among all vehicles arriving during effective
red interval. The probe arrival rate during the red interval is therefore
qr

.Pr  (probe pcu/second)
qp  = average probe arrival flow rate during cycle time (pcu/seconds), defined

as

y

rregg
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rqPgqP
q

⋅⋅+⋅⋅
=

(2)

φ    = ratio of the proportion of probe vehicle arrivals during the effective
green interval to the proportion of probe vehicle arrivals during the

effective red interval, defined as 
r

g

P

P
=φ

Distribution of Delay

Figure 1 illustrates the arrival rate for all vehicles and for probe vehicles

only.  Consider the case that a probe vehicle is randomly sampled from all probe

vehicles arriving at the approach during the cycle time. The arrival time of the

sampled probe vehicle, noted as T, would be a step-wise uniformly distributed

random variable and its distribution can be described by Equation 3.
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It should be noted that if both Pr and Pg are replaced by 1.0 in Equation 3,

the result is the PDF of the arrival time of a general vehicle sampled from all

arriving vehicles (population).

For a vehicle arriving at the approach at a given time t, its delay (noted as d

for general vehicles and dp for probe vehicles) can be determined based on

deterministic queuing theory (as shown in Figure 2).



Hellinga and Fu 6
















≤<

≤<







−
−

≤<⋅





 −+

==

yc

c
c

cr

r

p

cttif

ttrif
rt

tt

s

rq

rtift
s

q
r

dd

0

01

(4)

Where tc is the time when the queue is cleared and can be determined by
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In the case that a vehicle is randomly selected from the arriving flow, its

delay would also be a random variable with its distribution depending on the

distribution of its arrival time (Equation 3).  Denote Dp as the delay of a randomly

selected probe vehicle, and D as the delay of a randomly selected general vehicle.

The following section discusses the derivation of the distribution of Dp.  Note that

the distribution of D can be easily obtained from the distribution of Dp by setting

Pr = Pg = 1.0

First, the sampled vehicle may experience no delay and the probability of

this outcome is equal to the probability that the vehicle arrives during the time

interval [tc, cy], which can be determined from Equation 3:

        P(Dp = 0) = P(tc < T < cy)

= 
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Second, as shown in Equation 4, the vehicle may experience a delay that

decreases linearly from 
s

rqr  to zero when the arrival time increases from r to tc.

The probability that the vehicle would experience a delay greater than zero and

less than or equal to 
s

rqr  is therefore equal to the probability that the vehicle

arrives during the time interval [r, tc] (Equation 7).
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Since the arrival time is uniformly distributed over the arrival time interval [r, tc],

delay should also be uniformly distributed with its PDF as shown in Equation 8.

)0(
)(

)0(

)0(
)(

a

r
p

gyp

gg

r

r
p

pD

c

rq
d

qscq

sqP
s

rq
s

rq
DP

df
p

⋅
≤<

−⋅⋅

⋅⋅
=

−
⋅

⋅
<<

=

(8)

Similarly, the probability that the vehicle would experience a delay greater than

s

rqr  and less than or equal to r can be determined based on Equation 4.
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The PDF of the delay within this regime is
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In summary, the delay of sampled probe vehicle is a mixed discrete and

continuous random variable with its PMF represented by Equation 6, 7 and 9 and

PDF represented by Equations 8 and 10.

Mean Delay of Probe Vehicles

With the given distribution functions, the mean delay of probe vehicles,

E[Dp], can be obtained through the following mathematical expectations:
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Based on Equations 8 and 10, Equation 11 can be rewritten as,
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Consider a more idealized situation where no platoon progression exists and

the arrival flow rate during the effective green interval is the same as the arrival

rate during the effective red interval (i.e. qg = qr = q). Then Equation 12 can be

simplified to Equation 13.
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From Equation 13, it can be observed that if the probe arrival ratio (φ) is

equal to 1 (i.e. a randomly selected probe can be considered as a general vehicle),

the resulting equation is the well-known expression for uniform delay for all

vehicles (see for example Hurdle, 1984; Teply et al, 1995). This implies that the

expected delay of the probes is equal to the expected delay of all vehicles

(population).

However, when the proportion of probe arrivals during the green interval

(Pg) is not equal to the proportion of probe vehicle arrivals during the red interval

(Pr) then 1≠φ  and E[Dp] is no longer equal to the expected mean of the

population (E[D]).  Physically this means that if a disproportionate number of

probe reports are received from probes that arrive during the green or red interval,

then the sample is no longer random, but is biased.  Consequently, the average

delay computed from the probe reports is also biased and will asymptotically

approach the probe mean (E[Dp]) but not the population mean (E[D]) even if the

number of probe reports is very large.

The theoretical analysis in this section has examined an idealized signalized

intersection in which the delay associated with only a single link departure

movement has been considered. However, the results are equally applicable to
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intersections with more than one outbound movement (e.g. left-turn, through, and

right-turn movements), if each outbound movement is considered individually.

The next section examines the potential sources of bias that are likely to be

encountered in field conditions, and addresses the issue of multiple outbound

movements.

Sources of Sample Bias

An important practical issue then, is to determine under what conditions the

probe sample can be considered a biased sample.  The previous section has

shown, based on a theoretical derivation, that for an idealized intersection arrival

time bias in the sample will lead to a systematic bias in the estimate of the

population mean. If we consider that the objective is to estimate the population

mean link travel time, where the population consists of all vehicles traversing the

link regardless of the movement used to exit the link, then for a typical signalized

link, the sample of probe reports can become biased in two ways:

1. First, the distribution of link entry times for probes may differ from the

population.  The time at which a vehicle enters the upstream end of a link

depends largely on the turning movement required to access the link and

the traffic controls impacting that movement.  For example, consider the

network illustrated in Figure 4 in which the intersection bounding the

upstream end of the link is signalized and consists of 4 approaches.

Vehicles accessing the link for which the delay is being measured do so

via one of three possible movements, namely a left turn from the cross

street; a right turn from the cross street; or a through movement from the

main-street. Each of these movements is controlled by the upstream traffic

signal and by gap acceptance behavior for opposed movements (i.e. left

turn on green, and right turn on red).  As illustrated in Figure 4, the

distribution of link entry times is different for each of the three
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movements.  Consequently, if the proportion of probe vehicles varies with

each movement, then it also follows that the probe link entry time

distribution will be different from that associated with the population.

Since delay at the downstream intersection is a function of arrival time, a

bias in arrival time will also result in a bias in delay.

2. The second cause of bias is associated with the movement used to exit the

link (i.e. left turn; through, or right turn) at the downstream intersection.

Typically, each movement experiences a different average delay.  If the

proportion of probe vehicles varies with each exit movement, then the

sample is biased as a result of over or under sampling an exit movement

that experiences a delay that is greater than or less than the population

average.

Consequently, for a link bounded by a 4-leg intersection at the upstream and

downstream ends, there exist 9 distinct sub-populations (one associated with each

combination of entry and exit movement), each with its own set of travel time

characteristics.  If the proportion of probes varies across these 9 sub-populations

then a bias will result.

Effect of Sample Bias within a Sample Network

To illustrate the potential magnitude of the sample bias, a simple linear

network was modeled using the INTEGRATION traffic simulation model (Van

Aerde et al, 1996).  The network, illustrated in Figure 5, consists of a single

arterial roadway that is intersected by two cross streets.  Each intersection is

controlled by a fixed-time signal (cy = 120 seconds; g = 75 seconds for the

arterial; g = 37 seconds for the cross street; offset = 0 seconds).

The network is modeled for 1 hour with constant (time invariant) demands.

Vehicles are generated at all origin zones with negative exponentially distributed
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headways.  The O-D traffic demands between each of the 6 zones are provided in

Table 1. The application of these demands to the network results in the

intersection approaches experiencing V/C ratios ranging from approximately 0.3

to 0.75.  Consequently, all of the intersection approaches operate in an

undersaturated mode.

The time to traverse each link segment, the unique vehicle ID number, the

time when the vehicle departed the link (i.e. time of probe report), and the

vehicle’s origin and destination were recorded for each vehicle. This log

represented the travel times experienced by the entire vehicle population.

Three probe sampling scenarios were defined as follows:

1. Unbiased: all O-D pairs were sampled at the same level of market
penetration (LMP).

2. Biased 1-6: only vehicles travelling between origin 1 and destination 6
were sampled.

3. Biased 2-4: only vehicles travelling between origin 2 and destination 4

were sampled.

For each sampling scenario, simulations were conducted for 22 levels of

market penetration (i.e. 0.0 to 0.3 in 0.02 increments and 0.4 to 1.0 in 0.1

increments). For each test, probe reports were aggregated into 5-minute periods

(12 periods in total). The mean segment travel time computed on the basis of the

probe reports, and the number of probe reports within each period were recorded

for each test. The results are examined for vehicles traveling eastbound on link

segments 1, 2, and 3 only (Figure 5).

Segment 1 represents a link that is not affected by in traffic signals at either

its upstream or downstream and for which only a single entry movement and exit

movement is possible.  Therefore, a biased sample (based on over or under

sampling a sub-population) is not possible.  Furthermore, since the link is not
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controlled by a signal, the link travel times are not expected to exhibit a great

amount of variation.

Segment 2 represents a link for which bias can only arise as a result of over

or under sampling the downstream exit movements.

Segment 3, having a signalized intersection at both the upstream and

downstream boundaries, is susceptible to bias as a result of over or under

sampling any of the 9 possible combinations of entry and exit movements.

Figure 6 illustrates the mean travel time for segment 1 estimated from probe

reports received during each 5-minute period, as a function of the number of

probe reports. The 95% confidence limits (C.L.) of the estimated mean segment

travel time are also illustrated.  These confidence limits are computed from

Equation 14 using the entire vehicle population under the assumption that probe

reports represent a randomly selected sample from a single infinite population.

For segment 1, there is no opportunity for bias by over or under sampling a

specific entry or exit movement, so this assumption is valid.

C.L. of  
( )







±=

n

xVAR
zxx i (14)

Where x is the mean segment travel time computed from the entire population of

vehicles traversing the segment during the 1-hour simulation; VAR(xi) is the

variance of the individual vehicle segment travel times about x ; n is the number

of probe reports received during the time interval; and z is the normal standard

deviate associated with the confidence limits (i.e. z = 1.96 for a confidence limit

of 95%).

Three observations can be made from Figure 6.  First, the mean travel times

are all within a very small range of between 23 and 28 seconds.  This is expected,

since no signal impacts this link.  Second, the 5-minute average travel times are
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distributed between the confidence limits with no apparent bias. Third, the

confidence limits of the sample mean show an initial rapid reduction in the error

of the estimate as the number of probe reports increases.  Furthermore, the error

tends to zero as the number of reports approaches infinity.

Figure 7 illustrates the mean 5-minute travel times obtained from probe

reports for biased and unbiased samples.  From these results it is evident that

having a biased sample results in mean travel time estimates that do not represent

the travel time experience of the population.  In particular, when sampling from

only those vehicles travelling from origin 1 to destination 6, the resulting sample

mean travel times are much larger than the population mean travel times.  This is

expected as this sample of vehicles is required to make a left turn at the

downstream end of segment 2, and consequently experience much greater delay

than the population of vehicles traversing segment 2.

Figure 8 illustrates the effect of bias in the arrival time distribution between

probe vehicles and general vehicles traversing segment 3.  Mean travel times from

two samples are presented. The unbiased sample reflects the experience of the

true population.  The biased sample only reflects vehicles that are travelling

between origin 2 and destination 4. From the results in Figure 8 it is evident that

the biased sample travel times consistently underestimate the population travel

time.

While the biases presented in this example network can be considered to be

extreme, they do serve to illustrate the potential extent of the problem.

Furthermore, the results from Sen et al. (1997a) discussed earlier in this paper, are

based on field data in which all probe vehicles traversed a set of links by using the

same link entry and link exit movements.  Thus, the sample used in their analysis

has a level of bias that is similar to that associated with the examples provided in

this paper.  The findings described within this paper demonstrate that the
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conclusions of Sen et al, that “a small number of probe reports within a 5-minute

interval yields a standard error that is not substantially improved by making the

number of probes much larger”, should not be generalized!

Conclusions and Recommendations

Previous research in the literature has provided seemingly contradictory

conclusions regarding the accuracy of mean link travel times estimated from

probe vehicle reports. The apparent disagreement between these results gives rise

to confusion among practitioners and may lead to inappropriate ATIS design

decisions.

This paper has examined the issue of the accuracy of mean travel times as

estimated from probe vehicles. More specifically, this paper has shown that under

conditions when the probe vehicles represent a biased sample, the sample mean

does not approach the population mean. It has also been shown that for a typical

link, that is bounded at both the upstream and downstream ends by a signalized

intersection, the population of vehicles can be divided into 9 sub-populations,

each associated with a unique turning movement combination for entering and

exiting the link.  If the proportion of probe vehicles varies between these 9 sub-

populations, the probe reports represent a biased sample and error associated with

the sample mean may remain quite large, even when the sample size is large.

However, if the proportion of probe vehicles is nearly constant across all of the 9

sub-populations, then the sample is unbiased, and the probe reports can be

considered to represent independent samples from the population.  In this case,

standard sampling theory holds, and the error of the sample mean decreases as the

sample size increases.

Thus, the identification of sample bias enables the apparently inconsistent

results of previous research reported in the literature, to be more clearly



Hellinga and Fu 16

interpreted. Specifically, the work of Sen et al. (1997a) can be seen as applicable

to scenarios in which the probe reports constitute a biased sample of the

population.  Conversely, the work of Van Aerde et al. (1993) is applicable when

the probe reports are an unbiased sample of the population.

It has been shown that the degree to which the probe reports represent a

biased sample is critical in assessing the reliability of the sample mean as an

estimate of the population mean.  Therefore, it is recommended that further

research focus on developing methods that can be applied under field conditions

to quantify the degree of bias associated with a sample of probe reports.

Furthermore, if this bias can be quantified, it is recommended that methods be

developed by which the impact of this bias can be reduced or eliminated in order

to provide more accurate estimates of the population mean travel time.
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Destination ZoneOrigin
Zone 1 2 3 4 5 6

Total

1 300 162 808 81 100 1450
2 75 31 154 15 600 875
3 38 5 100 200 7 350
4 920 120 150 200 160 1550
5 192 25 500 200 33 950
6 250 400 8 38 4 700

Total 1475 850 850 1300 500 900 5875

Table 1: O-D traffic demands for test network (vph)
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Figure 1: Illustration of arrival rates for probe vehicles and all vehicles
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Hellinga and Fu 24

tc Time of arrival

Delay
(seconds)

0 r cy

r

qrr/s

Red interval (r) Green interval (g)
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Figure 5: Arterial test network configuration
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Figure 6: Mean 5-minute travel times and 95% confidence limits
for unbiased sample (Segment 1)
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Figure 7:  Mean 5-minute travel times from unbiased and biased samples as
a function of number of probe reports (Segment 2)
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Figure 8: Mean 5-minute travel times from unbiased and biased samples as
a function of the number of probe reports (Segment 3).


