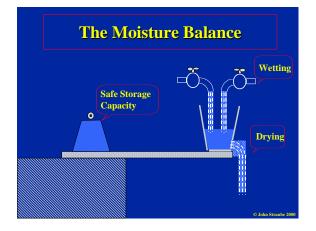
Rain, Driving Rain & Rain Control

Dr John F. Straube

Moisture Control

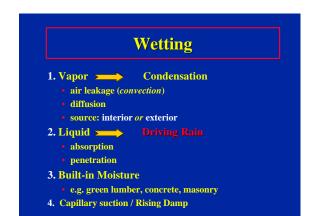
 Moisture is involved in almost all building envelope performance problems

- In-service Durability
- Examples:
- corrosion,
- freeze-thaw,
- rot, mould (IAQ)
- staining
- etc.



The Moisture Balance

• Wetting


- Exposure: Rain, Wind, Sun, RH, temperature
- Interior conditions: RH, temp., pressurization
- Design to avoid? Or balance?

• Drying

- Same exposure/ interior conditions concerns as above
- Which mechanisms?
- Which direction?

• Storage

• How much? How safe?

Wetting

- Driving Rain is not the ONLY source of wetting (recall Part 3)
- Usually the largest
- Other wetting mechanisms may tip the balance
- Gross leakage overwhelms
- HVAC? Operation? Occupancy?

Drying 1. Liquid • drainage free liquid water only • emergency relief valve 2. Vapor Evaporation • air leakage (convection) - ventilation (e.g. for vapour resistant cladding) • diffusion - vapour barriers slow inward drying - vapour resistant claddings slow outward drying

Storage

- Bridges gap in time between wetting and drying
- How much and for how long before damage
- Safe storage
 - mold, freeze-thaw, corrosion
- Amount of storage
 - e.g. steel stud, vs wood stud vs concrete block
- Basic mechanisms
 - capillary pores (bound liquid)
 - sorption (vapour)
 - pools and puddles (free liquid)

Rain Penetration Control

Rain is largest moisture source Control ...

- 1. Surface staining
- 2. Moisture damage to wall materials
- **3.** Through-wall penetration

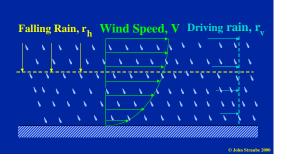
Rain Control

First Understand, then Control:

- Deflection
 reduce water on building
 redirect water away
- Drainage
 slope surfaces, use flashing
 - provide drained walls and joints
- Drying
 - · allow any remaining water to dry

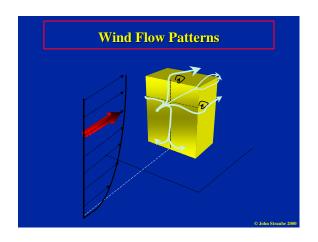
Driving Rain

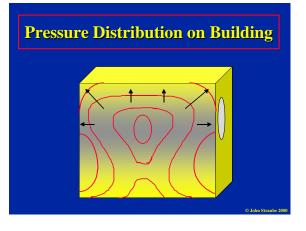
• Site and Climate

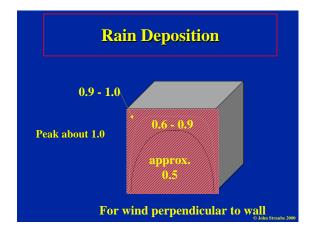

 wind direction, rainfall intensity, duration, frequency

• Building

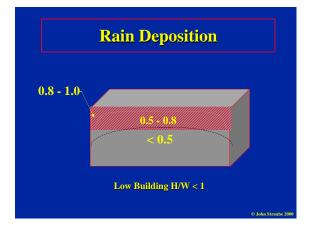
• height, orientation, shape

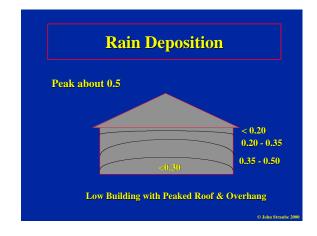

• Wall


- shedding,
- absorption
- transmission



Driving Rain





Highrise vs Lowrise

 $r_{bv} = RAF DRF V r_h$ = RAF r_v

For 50m High rise

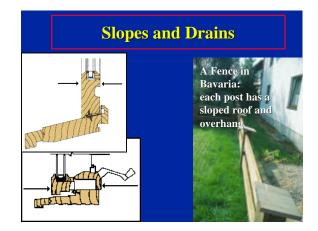
- V = Two times fully exposed lowrise
- most lowrise protected by neighbouring buildings
- Highrise: Max RAF= 1
- Lowrise /overhang: RAF = 0.5
- Driving rain minimum four times greater

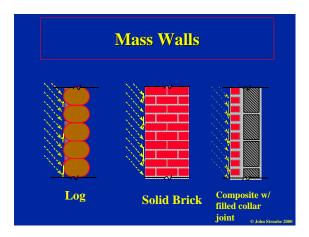
Driving Rain Site and Climate wind direction, rainfall intensity, duration, frequency Building height, orientation, shape

• Wall

- shedding,
- absorption
- transmission

Shedding: Surface Drainage


- Surface Drainage Accumulates on Tall Buildings
- Redistribute and Control via
 - Drips
 - Overhangs
- Protect Windows, Saddles, etc.
- If it doesn't get wet, it wont leak

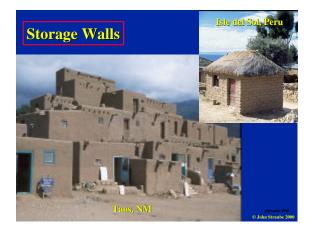


Drainage / Transmission

- Shedding always important to reduce rain load (Deflection)
- Internal drainage and transmission: differentiation of rain control approach

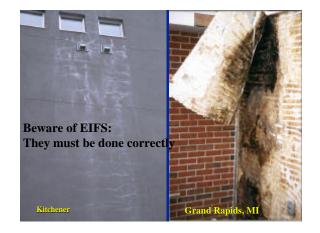
Envelope Element Joint Imperfect Barrier Mass Screened		velope Clas	sincation
	-	M	-
	Г	my	
Murray Remand	Imperfect Barrier		Perfect Barrier
			

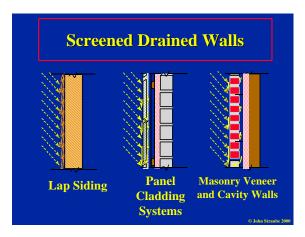
Mass or

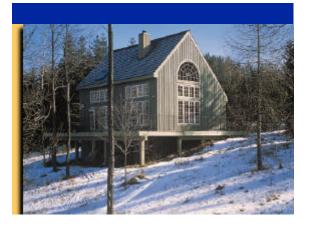

Storage

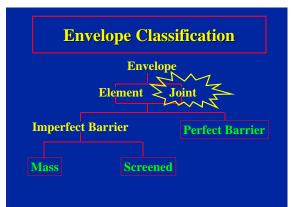
(Reservoir)

Note: Surface Drainage Control and reduced exposure are important





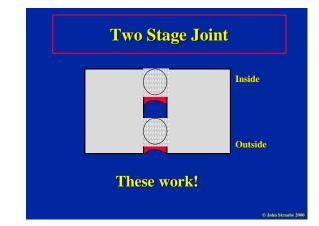


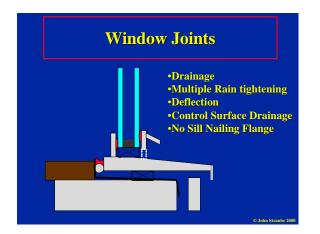


Screened and Drained

"Rainscreen Walls"

- Usually the preferred approach
- Assume water leaks through cladding
- provide clear, uninterrupted drainage
- water barriers important
 - Housewraps, building paper
 - membranes, etc
- Flashing at base and windows is critical





Joints

• Can be:

- mass (e.g., log chink)
- perfect barrier (e.g., sealant)
- screened drained (e.g., two-stage joints)
- Surface drainage means joints are exposed to water
- Sealants fail
- Window-wall, dryer vent, balcony penetration, electrical service, etc. are critical

Rain Control Conclusions

- Deflection, Drainage and Drying
- Provide overhangs, surface features to control water on surface
- Provide drainage and slopes to remove rain
- Provide drying to remove any water that stays