Buildings, Enclosures, and The Royal Building System

Sept 2004

Dr John F. Straube

Assistant Professor Dept of Civil Engineering& School of Architecture University of Waterloo Ontario, Canada

Overview of Presentation

Buildings

- what are they and why build them
- Building enclosures
 - their components
 - their functions
- The Royal Building System
 - how it fills the needs
 - how it compares functionally
 - RBS strengths and advantages

- New building systems require fresh thinking
- Process of development
 - define need
 - propose solution
 - confirm it works
 - design and work out details

Building Function

- What do buildings do?
 - "Durability, Convenience, and Beauty"
 - Vitruvius 70 BC
 - "Provide space for human use & occupancy"
 - Straube 1994

Buildings

- *"Provide space for human use & occupancy"*Usually control the interior environment

 1. By passive means e.g. caves (the enclosure)
 <lu>
 2. By optime means e.g. fine (convices, HVAC)
 - 2. By active means e.g., fire (services, HVAC)

Building Lifecycle

- Conception
 - why? fill a need
- Design
 - define what
- Construction
 - how to build
- Operation Maintenance & Repair
 - Owner's and Operators Manual
- Conversion Reuse
- Demolition & Recycling of materials/sub-systems

Building Enclosure

Separates interior and exterior environment Critical building component (function, aesthetics) **RBS** provides building roof vent enclosures, not walls! •roof •wall, • window, • door, • basement, • slab etc. ventilated crawls pace backfill 2

Building Enclosure

• What does the building enclosure do?

- Basic Building Enclosure Functions
 - Support
 - Control
 - Finish
 - Distribute (sometimes)

Hierarchy of need

- Basic Functions
 - Support -
 - Control
 - Finish
 - Distribute (sometimes)

Lateral (Wind Earthquake) Gravity (dead, snow) Rheological (temp, moisture) Impact Wear / Abrasion

Support - resist and transfer physical forces from inside and out

Basic Functions
Support
Control
Finish
Distribute (sometimes)
Heat Air Vapour Rain Sound Fire Insects Access

Control - Mass and Energy Flows

- Basic Functions
 - Support
 - Control
 - Finish –
 - Distribute (sometimes)

Colour Texture Reflectance Pattern Speculance

Finish - interior and exterior surfaces for people

- Basic Functions
 - Support
 - Control
 - Finish
 - Distribute (sometimes)

Electricity Communications Plumbing Air ducts Gas lines Roof drains

Distribute Services - a building function imposed on the enclosure

Who Cares?

Who Cares?

- Architect "brick, painted drywall inside"
- HVAC Engineer = "R19"
- Structural Engineer = "Wood Stud"
- Reality:

The Enclosure is a System.

 RBS is a system, whose benefits arise when seen as a system

Building Enclosures: Change

RBS Wall System

- Extruded polymer components
- 3 Sizes: 100 mm, 150 mm, 200 mm
- $f_u = 40$ MPa, E = 3600 MPa

System Schematic

The Simplicity of RBS

Control

- Rain control
- Vapour control
 Finish

Support

- Formwork
- Abrasion
- Reinforcing

Control •Heat flow •Air flow •Fire Support •Transfer shear •Transfer horiz. •Impact Control • Vapour control Finish Support • Formwork • Abrasion

Reinforcing

The Simplicity of RBS

Control • Rain control • Vapour control Finish Support • Formwork

- FUIIIWUIR
- Abrasion
- Reinforcing?

Control • heat flow

Control • Vapour control Finish Support • Formwork

- Abrasion
- Reinforcing

Special Topics

- Support: disaster resistance (tornadoes, hurricanes, earthquakes, blast) requires:
 - high load capacity,
 - ductility,
 - distributed structure
- Control: moisture control is critical to durability
 - rot
 - corrosion
 - mould

Flexure Testing

- Four Point Bending
- Span 2000 mm, loaded at quarter points

Typical Column Behaviour

Disasters and mistakes

Control: Heat Flow

Thermal Resistance

- R-value
- Thermal Bridging
- Airtightness
 - about 30 50% of energy loss
- Mass
 - smooths peaks and valleys
 - takes advantage of heat within (sun, equipment)

Heat flow matters

- Cold climates
- Hot climates
- Cold storage

Thermal Bridging

- Steel is 400 times more conductive than wood
- Wood studs cover 15-20% of walls

R-value Comparison

Insulation on the *Outside* makes the most sense

RBS Advantages

- Complete insulation coverage
- Moisture resistance
 - Key RBS advantage
 - agriculture
 - car wash
- Disaster tolerance (control + support)
 - Flood hurricances, etc
 - Impact flying 2x4, forklift

Mold concerns

• Mold is a growing concern

A brief comparison of enclosure wall systems

Commercial construction

Steel and Wood Framing

100

Wood and Steel Framed

- Low-cost, available labour, no cranes
- Lightweight? (foundation, earthquake loads)
- Fast construction, weather insensitive
- flexible design on site, little lead time

Wood and Steel Framed

Disadvantages

- moisture damage susceptible (rot, corrosion)
- impact damage from inside, maybe outside
- fire (?)
- Iow load capacity
- low disaster resistance
- Iow thermal mass + high thermal bridging

Single Wythe Masonry

Single Wythe Concrete Masonry

- Advantages
 - moisture resistant
 - fire resistant
 - high axial strength
 - can be disaster resistant -- usually not
 - thermal mass
 - flexible design on site, little lead time

Single Wythe Concrete Masonry

- Disadvantages
 - on-site time and labour is high
 - Labour is scarce
 - requires scaffolds, cranes
 - poor insulation
 - rain penetration problems

Masonry – walls not enclosures

Insulation? Cladding?

Multi-wythe Masonry

Multi-wythe Masonry

- moisture resistant can be very durable
- fire resistant
- high axial strength
- can be disaster resistant -- usually not
- well-insulated thermal mass inside of insulation
- flexible on site design, little lead times
- Disadvantages
 - on-site time and labour is high, scaffolds, cranes
 - very high initial cost

Precast Panels non-bearing

Precast Sandwich Panels

- moisture resistant can be very durable
- fire resistant
- high strength
- can be disaster resistant -- usually not tied together
- well insulated- thermal mass inside of insulation
- on-site time and labour is low
- Disadvantages
 - Iong lead times
 - inflexible in-office and on-site design
 - very high initial cost

Metal Building Systems

- Iow cost
- Ightweight? (foundation, earthquake loads)
- Disadvantages
 - moisture damage susceptible (corrosion)
 - impact damage from inside and outside
 - fire (?)
 - low disaster resistance, impact resistance
 - low thermal mass + high thermal bridging

- moisture resistant, chemical resistant
- disaster and impact resistant
- fast construction, low labour on site, low lead time
- lightweight to transport, massive in service
- finish integral with product, colours, patterns
- well insulated (RBS 8i)

RBS for ICI Buildings

The Delivery Process

• **RBS** advantages

- Technical advantages
- Delivery process advantages
- Capital cost advantage
- Operating cost advantage
- Each participant optimize for their benefit, e.g.
 - designers: minimize risk, effort
 - contractor: maximize project profit

The Delivery Process

■ System benefit ≠ Sub-system benefit

- e.g. engineer chooses precast panels -- little design or inspection required from him/her
- benefit of lower HVAC costs does not save steel stud wall contractor money
- savings in coordination costs of windows, structure, etc. not usually prices
- save steel structure at perimeter
- Performance advantages go to owner
- Construction advantages to builder

Conclusions

• **RBS is an ENCLOSURE not a WALL**

• Must consider walls as a system

- support
- control
- finish
- Speedy construction
- Design flexibility
- Quality finish
- Durable, low energy