Moisture Fundamentals

OBEC Mould Seminar Toronto, November 17, 1999

Dr John F Straube

Assistant Professor Dept of Civil Engineering & School of Architecture University of Waterloo, Ontario, Canada

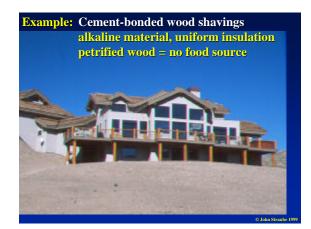
Outline of Presentation

- Mould, Moisture, and Temperature
- Moisture Control Fundamentals
- Surface Humidity
- Interior Moisture Loads
- Air barriers and Rain control

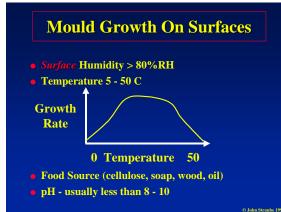
Fungi & Buildings

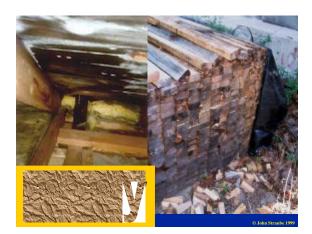
- We often make buildings of dead plants • sustainable
 - inexpensive and plentiful
- Fungi have evolved to eat dead plants
- We have a conflict of interest

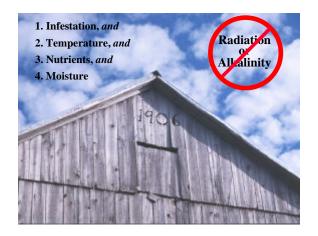
Fungi

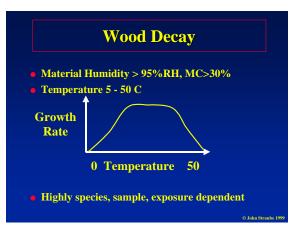

- 1.5 million types -- only 400 cause disease
- fungi = mould + yeasts
- No photosynthesis
- Why avoid mould?
 - 1. staining
 - 2. illness spores, mycotoxins, VOCs
 - 3. decay

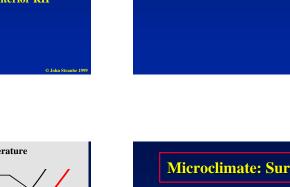
Mould

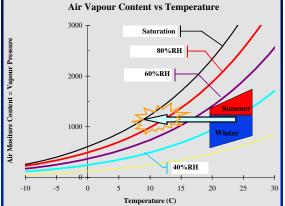

- Mould growth requires all of:
 - 1. infestation,
 - 2. temperature,
 - 3. nutrients,
 - 4. moisture
- cant avoid 1, hard to avoid 2 or 3.
- Therefore, control moisture!
- Use radiation and alkalinity

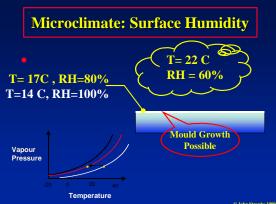


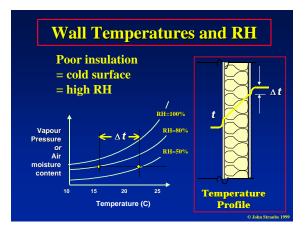


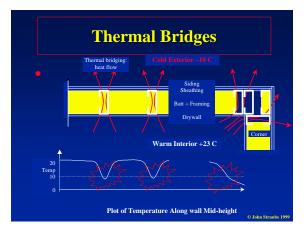


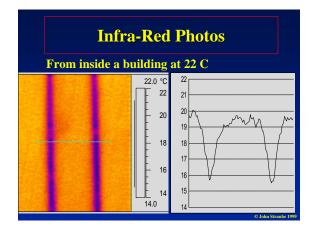


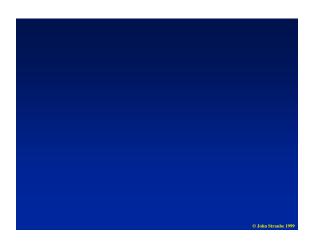


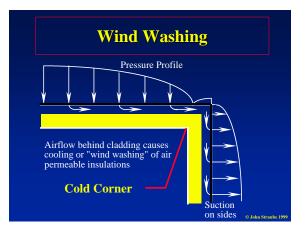

Surface Humidty


Mould Control

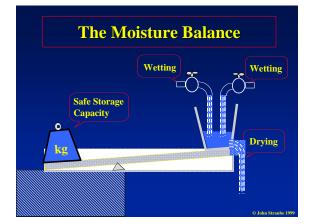

- Control conditions = moisture
- 1. keep RH at interior surfaces low
- 2. avoid wetting from bulk water
- 3. isolate interior air from inside enclosures
- Surface RH is NOT the same as interior RH







	erior Air at 2	
Interior RH	Condensation Temperature	Temperature @80%RH
20	-2	1
40	8	11
50	11	14
60	14	17
80	18	22


Moisture and Buildings

- Moisture is involved in almost all building envelope performance problems
 In-service Durability
- Examples:
- rot,
- corrosion,
- termites, (!),
- staining
- mould (TAO
- etc.

Moisture Control

Moisture-related Problems

- 1.*Moisture* must be available
- **2.** There must be a *route* or *path*
- 3. There must be a *force* to cause movement
- 4. The material must be *susceptible* to damage
- Theory: eliminate *any one* for complete control
- Practise: control as many as possible

The Moisture Balance Wetting & Drying What are the sources What are the mechanisms Storage • How much needed? What is "safe storage"? Design Philosophy:

• avoid wetting? Or balance with drying?

Wetting

- We are not perfect.
- Our buildings are not perfect.
- Therefore, our buildings get wet
- Hence, drying is also important

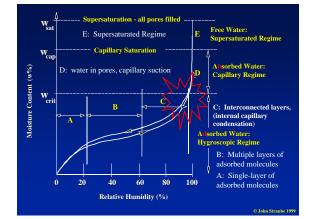
Wetting - Sources & Mechanisms

- 1. Interior and Exterior Air (Vapour) • by diffusion and air leakage (convection)
- 2. Driving Rain (Liquid)
 - by absorption ("wicking") and rain penetration
- 3. Soil Moisture (vapour & liquid) by diffusion, absorption and liquid penetration
- 4. Built-in Moisture (solid, liquid, vapour)
- not transported *stored* in masonry/concrete, green lumber, construction rain/snow

Drying - Sinks and Mechanisms

1. To Exterior (liquid)

- drainage free liquid water only
- stops leaving materials saturated
- 2. To Exterior or Interior Air (vapour)


 - first, evaporation *then*:air leakage (convection)
 - ventilation (e.g. for vapour resistant cladding)
 - - vapour barriers slow inward drying
 - vapour resistant claddings slow outward drying

Storage

- Bridges gap in time between wetting and drying
- How much moisture for how long before damage • I.e. Safe storage
- Amount of storage
- e.g. steel stud, vs wood stud vs concrete block
- Basic mechanisms
 - capillary pores (bound liquid)
 - sorption (*vapour*)
 - pools and puddles (free liquid)

Safe Storage Capacity

- Different materials react differently
- Primary environmental variables
 - temperature, time of wetness, RH (=MC)
 Approximate Thresholds
- Mould, fungi, corrosion, etc.:
 Over 80%RH. > 0 C "for some time"
- Over 80%KH, > 0 C "for some time
 Freeze-thaw, dissolution:
 - from 100%RH to saturated

Materials

- Define performance, e.g., no mould growth
- Must know "loads" = microclimate
- E.g. Cannot expose drywall to any moisture, concrete can be built underwater
- Steel corrodes, wood rots, gypsum dissolves

"No Wrong Material, Just Materials Used Wrong"

Enclosure Design for Durability

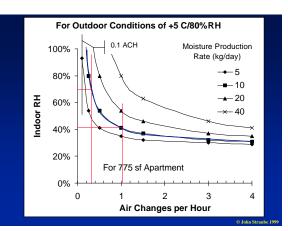
- Balance wetting, drying and storage potentials
- Durability:
 - choice of materials and
 - their arrangement for
 - the microclimates expected
- Use moisture susceptible materials in the proper microclimate

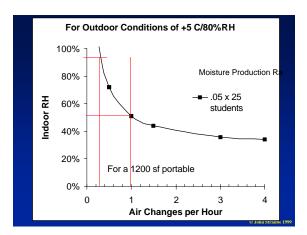
Summary of Materials

Material Performance Thresholds

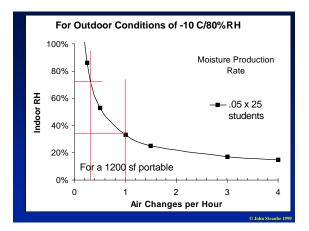
- Depends on materials, layers, sub-assembly, assembly, enclosure
- Beware sub-micro-climate
- Mould, corrosion : all *begin* at >80%RH, long-term


Internal Moisture Loads


- Mould grows well inside because it is warmer and no sun
- Interior mould is closer to occupants
- Hence, beware interior surfaces and hidden but connected spaces
- Keep interior spaces dry!


Major Sources of Interior Moisture

- Occupant Activity
 Total for Family of 4: 5 to 20 kg/day
- Drying out of rain wetting
- Wet basements and crawlspaces
- Leaky plumbing
- Floor washing


Source	Strength kg per day
People - evaporation per person	0.75 (sedate) to 5 (heavy work)
Iumidifier	2-20+
fot tub, Whirlpool	2-20+
irewood, per cord	1-3
Vashing floors, counters, etc.	0.2
Dishwashing	0.5*
Cooking for four	0.9 to 2 (3 with gas range)*
Defrosting (frost free) Fridge	0.5*
Typical bathing/washing per person	0.2 to 0.4*
shower (ea)	0.5
Bath (ea)	0.1+
Jncovered Crawlspace	0.5 / m ²
Jnvented Gas Appliance (ea)	1
Seasonal Desorption	3-8 depends on the type of construction
Plants/Pets	0.2 - 0.5 (five small plants or one dog)
fotal (Typical Family of 4)	About 10, but potential ranges 3 to 40

Interior Air at 22 C Surface temperatures cannot be less than:			
Interior RH	Condensation Temperature	Temperature @80%RH	
20	-2	1	
40	8	11	
60	14	17	
80	18	22	

Interior Humidity

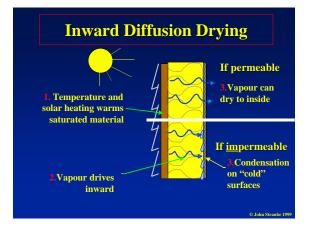
- Interior humidity will be higher in swing season than winter
- Interior surface temperatures lowest in winter
- Insufficient ventilation *will* encourage mould growth in most cases


Interior Humidity

- Fewer air changes = higher interior humidity
- More moisture production = higher interior humidity
- More airtight construction = interior RH is more sensitive to moisture production rate
- Solution: Controlled Ventilation

Other Issues

Internal Wall Wetting


- **1. Rain Absorption**
- 2. Rain Penetration
- 3. Water Vapour
 - i) Diffusion
 - ii) Convection

4. Splash/ Wicking (from ground)5. Plumbing Leaks

Rain Control

- Often largest source of moisture
- A large topic in its own right
- Maintenance and repair important
- Use overhangs, drips, etc.
- Usually causes mould inside enclosure
- Solar driven vapour can cause interior wetting

Air Barrier Systems

- Air barrier systems (ABS) control air flow
 ABS prevent air leakage condensation
- Not the same function as vapour barriers
 vapour barriers rarely important
- Interior air barriers protect occupants from mould growth within the enclosure
- A good ABS requires careful detailing
- "Build Tight, Ventilate Right"

Solutions

- Materials are not a simple answer
- *But*, paper-faced gypsum and ceiling tiles can not be allowed to get wet!
- Painted concrete block, plaster, exposed ceilings are *definitely* more moisture tolerant

Solutions

- Control humidity: ventilation /dehumidification
- Provide *timely* maintenance and repair
- Durable High performance buildings should be given credit over temporary buildings

Conclusions

- Mould Control = Moisture Control
- Moisture Control includes
 - interior humidity
 - rain penetration
 - plumbing leaks
 - maintenance activities
- Choose materials for expected conditions
- Controlled ventilation is important