Metal Building Systems: Dealing with heat and moisture issues

Dr John F. Straube

Assistant Professor Dept of Civil Engineering & School of Architecture University of Waterloo Ontario, Canada

jfstraube@uwaterloo.ca

www.balancedsolutions.com

Overview

Scope:

- Commercial (some residential)
- Light gauge steel stud
- Pre-manufactured metal build
- Roof s
- Thermal Control
 - mostly conduction
 - Moisture
 - mostly condensation

Thermal

Why Thermal control?

Save Energy

- Comfort
- Aesthetics
- Match competition
- Code Compliance

R Values

R VALUES

STANDARDIZED MEASURES OF RESISTANCE TO HEAT TRANS-FER. WERE FIRST PROPOSED IN 1945 BY EVERETT SHUMAN. WHO. AS DIRECTOR OF PENN STATE'S BUILDING RESEARCH INSTITUTE. CONTINUED TO PROMOTE THEIR ADOPTION. R VALUES WERE LATER WIDE-LY APPLIED TO INDUSTRIAL AND RESIDENTIAL INSULAT-ING MATERIALS AND HELPED CONSUMERS MAKE MORE ENERGY-EFFICIENT CHOICES.

PENN STATE ALUMNI ASSOCIATION

The Meaning of R-value

Thermal Resistance

- **R-value**
- Thermal Bridging
- Airtightness
 - about 30 % of energy loss
- Mass
 - smooths peaks and valleys
 - takes advantage of heat within (sun, equipment)
- Buildability / Inspectability
 - do you get what you spec/design?

R-value

• Gives heat flow as equivalent conductance

- Rarely includes thermal bridging
- or three dimensions

Never intended to include

- airtightness
- mass

Thermal Performance R-values and *Real* **R-values**

- Walls are three-dimensional and must be considered as such.
- Simple R-values are inadequate to describe thermal performance of some walls
- Dynamic behaviour and/or three-dimensional details greatly affect energy consumption.

See "Toward a National Opaque Wall Rating Label", by Jeff Christian and Jan Kosny, *Proceedings of Thermal Performance of Exterior Envelope of Buildings VI*, pp. 221-239.

Different Types of R-values

- Center-of studspace (R_{cs})
 - Typical value given. Calculated between framing members
- Clear-wall (R_{cw})
 - More realistic 2-D. Calculations/tests of a section of wall.
- Whole-wall (R_{ww})
 - Most realistic 3-D steady state. Calculations/tests
 - walls with interfaces, corners and openings, doors windows
- True Energy (R_{te})
 - Includes time effects, e.g., 4-D = "mass effect".
 - Dynamic Whole wall
 - Highly climate and building dependent.

Center of Studspace

- Ignores framing elements
- Accounts only for insulation, sheathing, etc.

Thermal Bridging

Different Types of R-values

- Center-of studspace (R_{cs})
 - Typical value given. Calculated between framing members
- Clear-wall (R_{cw})
 - More realistic 2-D. Calculations/tests of a section of wall.
- Whole-wall (R_{ww})
 - Most realistic 3-D steady state. Calculations/tests
 - walls with interfaces, corners and openings, doors windows
- True Energy (R_{te})
 - Includes time effects, e.g., 4-D = "mass effect".
 - Dynamic Whole wall
 - Highly climate and building dependent.

Thermal Bridging

- Steel is 400 times more conductive than wood
- Steel studs are about 40 times thinner

Condensation

RH	Condensation
	Temperature
20%	28 F
30%	37 F
40%	45 F
50%	50 F
60%	54 F

Wood vs Steel

#20

#21

2004

R-value Comparison

Adding batt is not helpful!

Wall Configuration (Stud Size and Spacing and Cavity Insulation R-value)

2

Cold Corners

Cold Corners - Answer

© John Straube 2004

Therm can calculate 2-D values - Free!

Solar Temperature Applieds to Exterior

© John Straube 2004

#30

Insulated on the outside

• Often easiest, simplest, safest to put all of the Typical Insulated Inner Wythe Cavity Wall

insulation on the outside!!

insulated ner wythe 2) exterior wythe dspace 3 sulation Exterior 7 insulation apour (4 · (opt) 6) Air barrier 5) Water resistant barrier sealant steel dowel Sealant/gasket & drained joint (rainscreen) Steel tie back connection **Typical Materials/Sub-systems** Masonry - brick or block Steel Stud and Drywall (shown) Wood Stud and Drywall Concrete ion space Masonry s load bearing (2) Siding vythe) Panels (metal, stone, ceramic, etc) Precast concrete (shown) Stucco / EIFS Batt (in studspace) (3) Cellulose Spray Foam terior sheathing (7) Rigid Fibrous erior sheathing or sheet Paint or vinyl wallpaper on drywall Expanded Polystyrene (4) pray-foam Extruded Polystyrene Polyethylene owel- / spray- applied foil-backed drywall Polyurethane Products embrane Kraft facing on batt Wood Fibreboard neet membrane Polyisocyanurate Spray-foam (5) Trowel- / spray- applied membrane

Sheet membrane

w/ Insulating Sheathing

Insulation on the Exterior

© John Straube 2004

Insulated Sheathing

- Blunts thermal bridges
- Get more R-value than you pay for
- Easiest is to add rigid foam
 - can be EPS, XPS, or PIC, even MFI
Impact of Insulating Sheathing

Different Types of R-values

- Center-of studspace (R_{cs})
 - Typical value given. Calculated between framing members
- Clear-wall (R_{cw})
 - More realistic 2-D. Calculations/tests of a section of wall.
- Whole-wall (R_{ww})
 - Most realistic 3-D steady state. Calculations/tests
 - walls with interfaces, corners and openings, doors windows
- True Energy (R_{te})
 - Includes time effects, e.g., 4-D = "mass effect".
 - Dynamic Whole wall
 - Highly climate and building dependent.

#39

Batt filled stud space

E.g. Rim Joists

Uninsulated Rim Joist
= thermal nightmare
Stuffing batts helps little

#40

Batt filled stud space

E.g. Rim Joists

Uninsulated Rim Joist
= thermal nightmare
Stuffing batts helps little

Steel Truss Roofs

Danger, danger!!

APRICED TES THE . CLASS

Different Types of R-values

- Center-of studspace (R_{cs})
 - Typical value given. Calculated between framing members
- Clear-wall (R_{cw})
 - More realistic 2-D. Calculations/tests of a section of wall.
- Whole-wall (R_{ww})
 - Most realistic 3-D steady state. Calculations/tests
 - walls with interfaces, corners and openings, doors windows
- True Energy (R_{te})
 - Includes time effects, e.g., 4-D = "mass effect".
 - Dynamic Whole wall
 - Highly climate and building dependent.

Typical R-values

	Center of cavity		Clear wall	Whole wall
Wall Description	$\mathbf{R}_{\mathrm{imagine}}$	R _{cc}	R _{cw}	$\mathbf{R}_{\mathbf{ww}}$
3.5" SS@16 o.c. R12	12-13	12	7.4	6.1
3.5" SS@16 o.c. R12 + 1" EPS	16-18	16	11.8	9.5
2x6 WS@24 in. o.c., R19 batt	20	19	16.4	13.7
2x4 WS@16 in o.c., R12 batt	12-13	12	10.6	9.6
EPS block forms	15.2	15.2	15.2	15.7
Stressed Skin 6" core	25	25	24.7	21.6

With information from Oak Ridge National Labso John Straube 2004

Codes and R-values

- Implications: traditional framed walls have usually over-reported R-values
- New ASHRAE 90.1 uses clear-wall *plus* mass effect
- Most local codes do not consider

True energy equivalent R-values will vary with climate and building type, but *consumption will always be lower for walls with thermal mass*, and lowest for walls with thermal mass on the inside.

Data Sources

Oak Ridge National Labs

- www.ornl.gov/roofs+walls
- Penn Housing Research Center
 - www.phrc.org Phone 814 865 2341
 - Report #58
- AISI
 - Thermal Design Guide for Exterior Walls

Metal Building Systems

Metal Building System

- heavy gauge or hot-rolled structure
- light gauge purlins, studs
- "bagged" insulations
- Serious Thermal Bridges
 - related problems with comfort and moisture
 - Mainframing
 - At fnd
 - Purlins
 - Consume lots of Energy
 - owners may accept this

• 71 F inside

•Two-D steady state temperature and heatflow calculation

• 71 F inside

#51

•Add 1"/25 mm (R6.5) polyiso to exterior

© John Straube 2004

Thermal blocks

Vermont Code

- Requires a thermal block between roof purlin and a metal roof
- This saves lots of energy, but also avoids condensation and ice dams

Air flow control

- Bagged insulation allows easy airflow
- Cracks and openings allow
- Small cracks are bad, big holes are worse
- Wind, stack and mechanical equipment generate the pressures

Bigholes

Airsealing

ohn Straube 2004

#66

Wall w/o Insulated Sheathing

Windwashing

Pressure Distribution

© John Straube 2004

Pressure Distribution

© John Straube 2004

Lateral Airflows - windwashing

© John Straube 2004

Internal Stack Effect & Insulation

Internal Stack Effect

- Gaps in batt insulation on both sides
- closed circuit
- energy cost
- cold surfaces

Conclusions

- Metal enclosures can be energy-efficient and control condensation BUT, this requires
 - Exterior Insulation
 - Air barrier system (as for other systems)
 - Rain Control (as for other systems)

