Good Windows

Dr John Straube

Dupont Young Professor Civil Eng Dept and School of Architecture University of Waterloo Waterloo, Ont Canada jfstraube@uwaterloo.ca

Windows

- Need to control
 - → heat loss,
 - → air leaks,
 - solar radiation
 - → rain, etc

Objectives

• Learn

- → appreciate impact of performance on bldg
- → differentiate between window features
- → understand variables in selection
- → to avoid big mistakes

Windows

- Functions: Same as wall *plus* transparent and allow ventilation
 not easy, hence expensive and <u>compromise</u>
 - Filt casy, hence expensive and compr
- Structure transfer loads
- Rain control
- Heat control
- Airflow control
- Solar gain control

Why Good Windows?

- Major impact on
 - → energy performance, e.g. HVAC equip
 - → condensation resistance
 - → comfort (warm, no drafts
 - → view and light
 - → rain penetration resistance
 - → sound control (airtight)

Controlling Heat Flow

- Windows usually have the lowest thermal performance of all parts of the enclosure
- Must control heat for
 - → Comfort
 - Energy
 - → Health
 - Durability

Window Performance Metrics

- Heat flow (R,U)
- Solar Heat Gain Coefficient (SHGC)
- Visual Transmittance (VT)
- Air leakage
- Condensation resistance
- Water penetration

Total Heat Flow

Anatomy of an IGU

- IGU = Insulated Glazing Unit =Coating+ Glazing + Spacer + Seal + Fill

Gas Fills

- Gas fills reduce the amount of heat transferred by conduction and convection through the space in the glazing unit
- No impact on solar gain

Fill	Conductivity (W/mK)	Reduction in Conductive Transfer	
Air	0.0241	-	
Argon	0.0162	33%	
Krypton	0.0086	64%	
Xenon	0.0051	79%	

Low-E, Gas Fills, Gap Size

- Double and Triple Glazing can have very good R-values and control solar gain
- Major factors for glazing
 - → Radiation control coatings (low E)
 - → Gas fills
 - → Size of Gap

Double IGU

Warm-edge / super spacers

- Heat flow through spacers is important
- Critical for condensation control
- Super spaces
 - → Plastic/foam edges seals
 - → stainless steel, very thin
 - Dramatically reduce cool glazing edges

Condensation

- Requires cold surface AND high indoor relative humidity
- Solutions
 - → energy efficient glazing
 - → reduced thermal bridging (frame/spacers)
 - → reduce RH via ventilation/source control
- Priorities
 - → control interior RH (cheap repair or retrofit)
 - → Thermal break (alu) or insulated frames
 - → Warm edge spacers, then Low-E argon

Frame Materials

A wide selection

Frames

- Different modes of operation
 fixed, awning, casement
- Different materials
 - → aluminum
 - → wood
 - → vinyl
 - → fibreglass
 - → wood-plastic composites

Wood

- Insulates well
- Pretty Strong and Stiff
- Aesthetic
- Rots
- Requires maintenance
- Combustible??

Aluminum /Metal

- Durable
- Stiff
- Strong
- Very Conductive (1600 times wood)
- Must have a thermal break
- bigger break is better

Wood Clad w/Alu or Vinyl

- Insulates well
- Pretty Strong and Stiff
- Requires little maintenance
- Interior Aesthetic
- Still Rots
- Combustible ??

Vinyl

- Inexpensive
- Insulates well (design influences this)
- Low maintenance
- Can have added insulation
- Expands, contracts, warps
- Corners leak
- Flexible may need stiffeners

Fibreglass

- Strong and Stiff
- Durable
- Excellent insulation
- Expensive (?)

Composites

- Wood and plastic resin
- Strong and stiff
- Insulates like wood
- Less maintenance
- No rot
- New

Frames = Heat Loss

Solar Heat Gain Coefficient

- SHGC = Solar Heat Gain Coefficient
- Fraction of solar radiation that passes
 Typical clear, dbl-glazed window SGHC = 0.72
 - → Typical Double glazing 0.72 0.76
 - → Reflective or dark time 0.10 0.30
 - → Spectrally Selective clear 0.30 0.40
- Higher SHGC?
 - → Maybe small residential buildings in heating climate
- Low SHGC? (<0.5)
 - → Commercial buildings
 - → Buildings with large glazing ratios (large window/wall area)
 - → Buildings in cooling or mixed climate

How much difference does SHGC make?

- 150 sq.ft. south-facing glass
- Change from 0.57 to 0.27 SHGC
- Air conditioning load reduction = ~1 ton!
- Avoid air conditioning?

Solar Gains - July 21 @45 N

Solar Gains - Jan 21 @ 45 N

Visible Transmittance

- VT is fraction of visible light that is transmitted
- Clear Double glazing VT = 0.75-0.80
- VT over 0.60 tend to look untinted and helps daylighting
- Tinting changes color
- Low-E coatings do not

Visible Transmittance

- VT = Visible Transmittance = Fraction of visible light that passes
- Typical clear, dbl-glazed window VT = 0.75-0.80
- Windows with VT > 0.50+ are perceived to be clear
- Tinting changes the color of light that passes
- low-e coating does not change color
- Spectrally selective: lower SHGC with good VT

Spectrally Selective

- Reduced SHGC with a high VT
- Allows daylighting and view with low solar heat gain
- Tend to have good U-values

Windows - Residential

Including Frame	U	R	SHGC	VT
Double-glaze broken Alu	0.64	1.56	0.62	0.62
Dbl Clr Wood/vinyl	0.49	2.04	0.56	0.58
Dbl Low-E Gain Wood/vinyl	0.36	2.78	0.52	0.53
Dbl Low-E Shade Wood/vinyl	0.32	3.13	0.30	0.50
Triple Low E Fiberglass	0.18	5.56	0.39	0.49
-				

Function: Air Leakage

- NFRC AL rates how much leakage based on standard conditions
- Does not include frame to wall!
- Aim for less than 0.20 cfm/ft²
- Weather stripping & Durability
- Compression fittings are tighter
- hence casement, awning windows better than sliders

Window Thermal Flanking

• Beware heat flow around window frame

Window Air Leaka

- Joints around window need to be airsealed
- Stuffing with batt does not work

- Read the label
 - → U-value (1/R)(<0.35)
 - → SHGC (heating/cooling?, west? South?)
 - → VT (>0.50, 0.60)
- → AL (NFRC optional)(low!)
- www.NFRC.org

Support

• Windows are not designed to take loads from the building

→ Design joints to accommodate movement

- Window must support wind loads and transmit these to the secondary structure
 - → Larger glazing areas & higher wind loads (e.g. high rise buildings) require thicker glass
 - → Beware large flexible PVC
 - → Frame transfers load from glazing unit to wall

Rain Control

- Windows are weak spots in enclosures
- They attract water
- They often leak internally
- They often leak around window

www.efficientwindows.org

-

Residential Small Buildings Only

Conclusions

- Understand importance of windows to building performance
- Balance U, SHGC, and VT
- Design and build
 - → draining sills, drained windows
 - → air barrier continuity with window
- Curtainwalls use less glass of better quality with better shade

Websites

- University of Waterloo
 - Building Engineering Group
 - → www.civil.uwaterloo.ca/beg
- Balanced Solutions
 www.balancedsolutions.com

