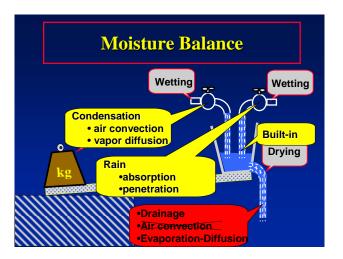
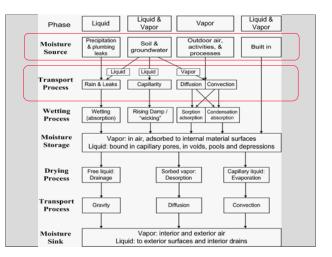

Moisture and Buildings


- Moisture is involved in almost all building enclosure performance problems
 - In-service Durability
- Examples:
 - rot,
 - corrosion,
 - mould (IAQ)
 - termites, (!),
 - staining
 - shrinkage/swelling
 - etc.


Moisture Control

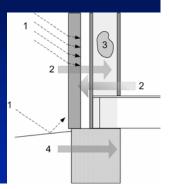
- Moisture-related Problems
 - **1.***Moisture* must be available
 - 2. There must be a *route* or *path*
 - 3. There must be a *force* to cause movement
 - 4. The material must be *susceptible* to damage
- Theory: eliminate *any one* for complete control
- Practise: control as many as possible

Design Choices

- Avoid wetting
- Provide enough drying to accommodate wetting
- Provide enough storage
- The balance has shifted over time

Design Solutions

- Balance wetting, drying, and storage
- Practical Rules
 - Provide a continuous plane of rain control including each enclosure detail
 - Provide continuous air barriers and insulation to control water vapor condensation problems
 - Allow drying of built-in and accidental moisture beware drying retarders


Wetting - Sources & Mechanisms

- 1. Interior and Exterior Air (Vapour)
 - transport by diffusion and air leakage (convection)
- 2. Driving Rain (Liquid)
 - Absorption ("wicking") and Liquid Penetration
- 3. Soil Moisture (Vapour & Liquid)
 - Diffusion, Absorption and Liquid Penetration
- 4. Built-in Moisture (solid, liquid, vapour)
 - not transported stored in masonry/concrete, green lumber, construction rain/snow

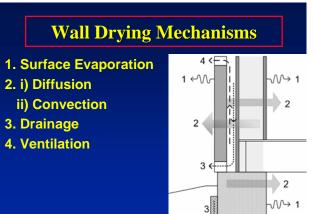
Wall Wetting Mechanisms

1. Rain

- absorption
- penetration
- splash and drips
- 2. Water Vapour
- Diffusion
 Convection (air leaks)
- 3. Built-in
- vapor, liquid
- 4. Ground • capillary, diffusion

Wetting means we need drying

- We are not perfect.
- Our buildings are not perfect.
- Therefore, our buildings
 get wet
- So provide drying


Drying - Where to and How

1. To Exterior (liquid)

- drainage free liquid water only
- stops leaving materials saturated

2. To Exterior or Interior Air (vapour)

- first, evaporation then:
- air leakage (convection)
- ventilation (e.g. for vapour resistant cladding)
 diffusion
 - vapour barriers slow drying

Storage

- Bridges gap in time between wetting and drying
- How much moisture for how long before damage
- Safe storage
- mold, rot, freeze-thaw, corrosion
- Amount of storage
 - e.g. steel stud, vs wood stud vs concrete block
 1: 10: 100+
- Basic mechanisms
 - capillary pores (bound liquid)
 - sorption (*vapour*)
 - pools and puddles (free liquid)

Safe Storage Capacity

- Different materials react differently
- Primary environmental variables
 - temperature, time of wetness, RH (=MC)
 Approximate Thresholds
- Mould, fungi, corrosion, etc.:
 - Over 80%RH, > 5 C/40 F "for some time"
- Freeze-thaw, dissolution:
 from 100%RH to saturated

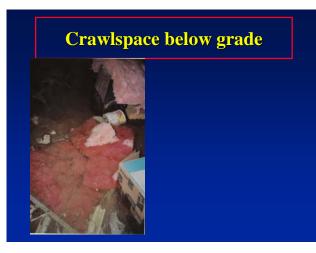
Transport • Vapour • Air movement • Diffusion • Liquid • Wicking • Gravity • Solid • Wind blown snow

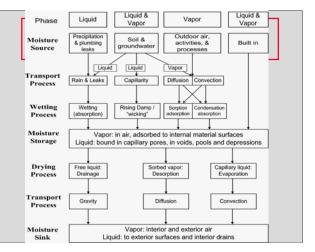
Applications

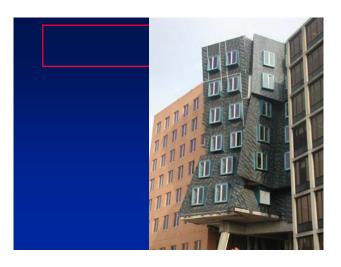
- Moisture Sources and transport
- Many stages, changes pahse

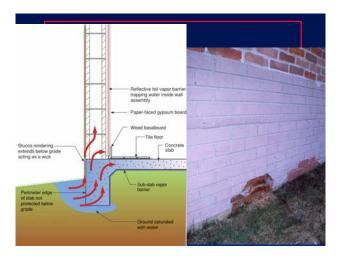
Wetting

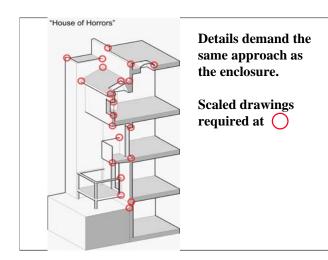
- HVAC condensate
- Plumbing leaks

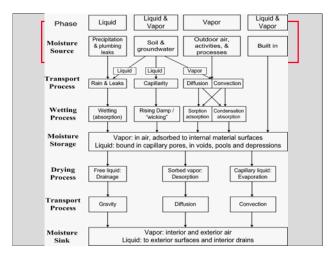












Enclosure Design for Durability

- Balance wetting, drying and storage potentials
- Durability:
 - choice of materials and
 - their arrangement for
 - the <u>microclimates</u> expected

Material Performance

- How to predict performance?
- We test materials and are interested in homes Must know loads, microclimate=exposure
- "No Bad Material, Just Materials Used Badly"

Material Performance Thresholds

- Corrosion
- Mould
- Decay
- Freeze-thaw
- Dissolution/Dissassociation
- Shrinkage/Swelling
- All are temperature and moisture

Moisture

- Need to understand more to deal with it
 - Durability
 - Health
 - Energy

