

Heat & Temperature

- Heat
 - A form of energy (like Light & Sound)
- Temperature
 - A measure of the amount of thermal energy

4

5

6

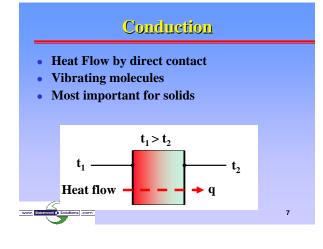
- Heat Flow
 - From more to less energy

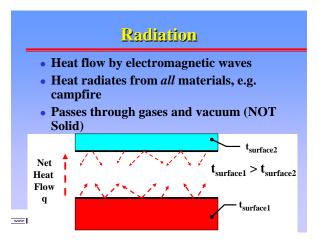
- Houses and Multis
- General principles apply
- Insulation
- Air tightness
- Windows & Radiation

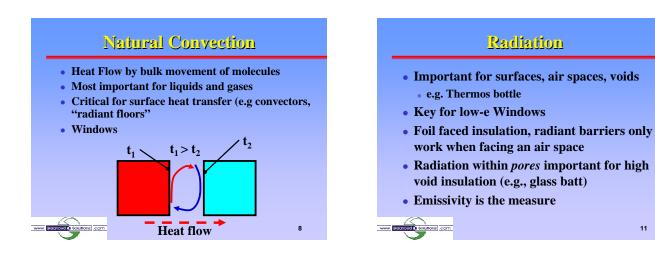
Heat Flow

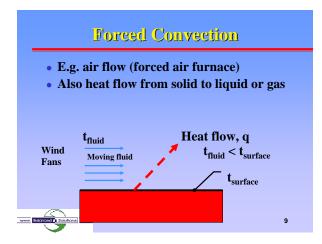
- Always moves from more to less
- Rate of flow depends on
 - Temperature Difference
 - Material Properties
 - Type & Mode of Heat Flow

Why control heat flow?

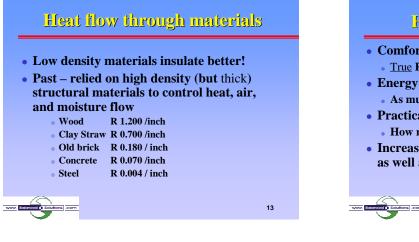

2


3


- Occupant Comfort
- Energy Savings
- Control surface and interstitial condensation
- Save duct and heating plant costs (Capitol)
- Meet Codes and specs


Heat Flow

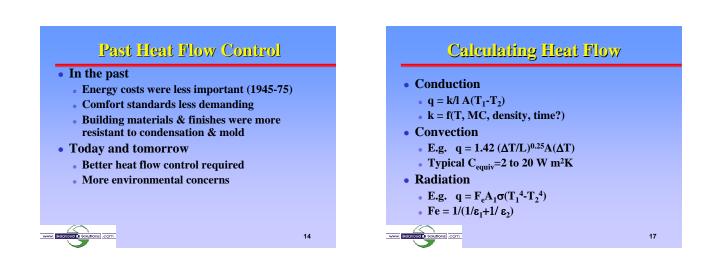
- Mode of Heat Flow
 - Conduction
 - Convection
 - Radiation
- Type of Heat flow
 - steady-state or dynamic
 - one-, two- or three-dimensional
 - We usually use 1-D static!

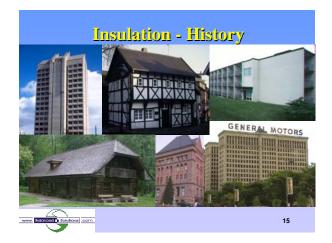


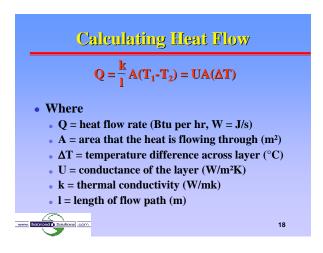
How to Control Heat Flow?

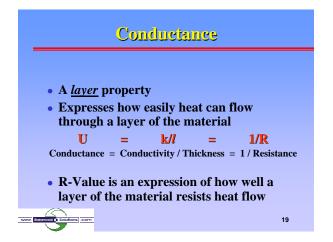
11

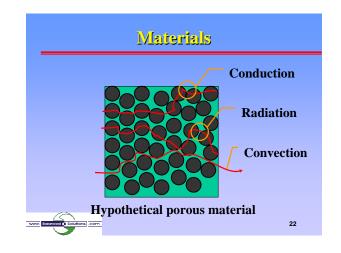
12

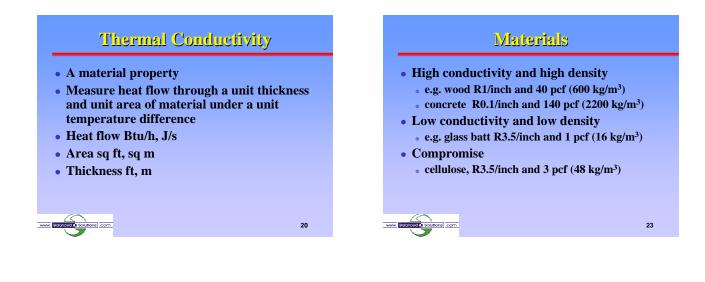

- Insulation to control conduction
- Air tightening to control convection
- Solar control to control radiation
- Systems assessment needed! Insulate? Air tighten? Shade? Mass? Windows?

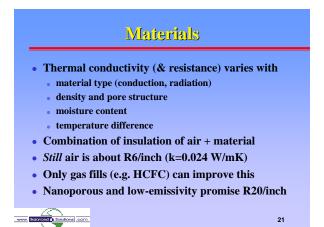


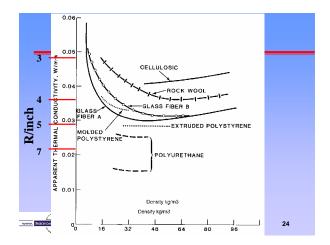

How much insulation?

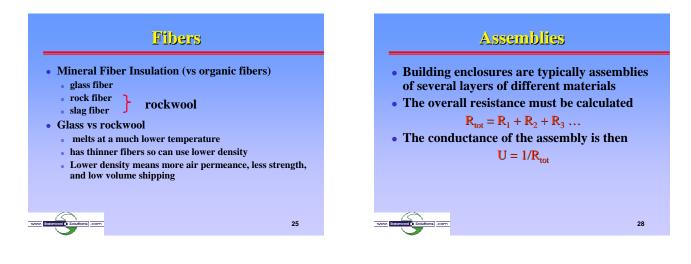

- Comfort & moisture –
- <u>True</u> RSI 2/R10 is often enough, but
- As much as practical
- Practical constraints likely the limit
- How much space available?
- Increased insulation changes HVAC capital as well as operating!

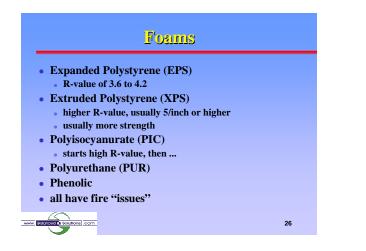

16

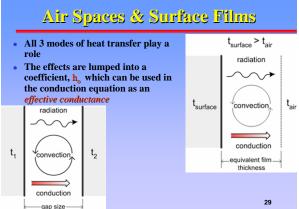






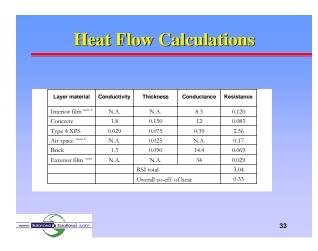


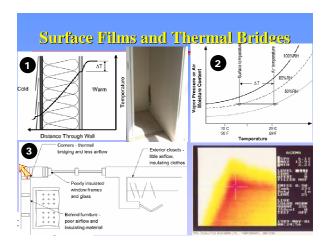


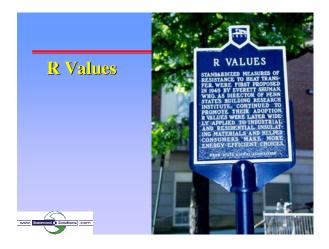


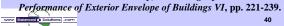


	tant in wind	ows and o	old		
 Airspaces are important in windows and old buildings Heat flow depends on heat flow <i>direction</i> and surface <i>emissivity</i> 					
Situation (poorly vented or sealed)	R/ RSI Value	Conductance			
Situation (poorly vented or sealed) Heat Flow Down (20-100 mm)	R/ RSI Value 1.0 / 0.18	Conductance 5.5			
Heat Flow Down (20-100 mm)					
	1.0 / 0.18	5.5			


Surface Films Surface films are important to define surface temperature of poorly insulated components esp. thermal bridges, windows, old buildings						
Surface Position	Flow Direction	Resistance	Conductance			
Still Air (e.g. indoors)		R / RSI	[W/m ² K]			
Horizontal (i.e. ceilings &	Upward	0.61/0.11	9.3			
floors)	Downward	0.93/0.16	6.1			
Vertical (i.e. walls)	Horizontal	0.68 / 0.12	8.3			
Moving Air (e.g. outdoors)		1				
Stormy 6.7m/s (winter)	Any	0.17 / 0.03	34			
Breeze 3.4m/s (summer)	Any	0.25 / 0.04	23			
Average Conditions	Any	0.33/0.06	17			


Gradient Calculation


	(W / m·K)	[m]	(W / m ² ·K)	(m ² ·K /W)	(°C)	(°C)
Interior temp						20
Interior film note 1	N.A.	N.A.	8.0	0.120	1.58	
						18.4
Concrete	1.8	0.150	12	0.083	1.09	
						17.3
Type 4 XPS	0.029	0.075	0.39	2.56	33.68	
						-16.3
Air space note 2	N.A.	25	N.A.	0.17	2.24	
						-18.59
Brick	1.3	0.090	14.4	0.069	0.91	
						-19.5
Exterior film note 1	N.A.	N.A.	34	0.029	0.38	
Exterior Temp						-20
			RSI total	3.04		
			U	0.33		

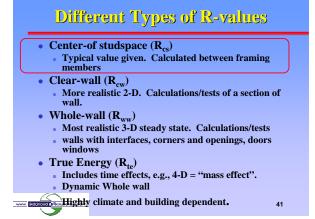


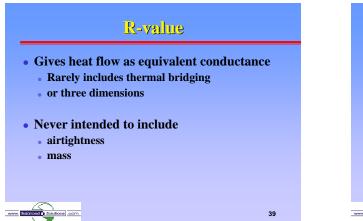
Thermal Performance

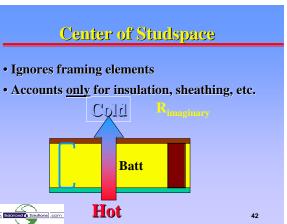
R-values and *Real* R-values

- Walls are three-dimensional and must be considered as such.
- Simple R-values are inadequate to describe thermal performance of some walls
- Dynamic behaviour and/or threedimensional details greatly affect energy consumption.

See "Toward a National Opaque Wall Rating Label", by Jeff Christian and Jan Kosny, *Proceedings of Thermal*

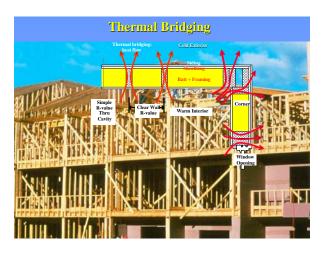

The Meaning of R-value


- Thermal Resistance
 - R-value
 - Thermal Bridging
- Airtightness
 - about 30 % of energy loss
- Mass
 - smooths peaks and valleys
 - takes advantage of heat within (sun, equipment)

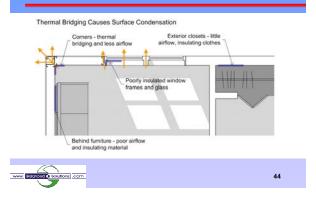

38

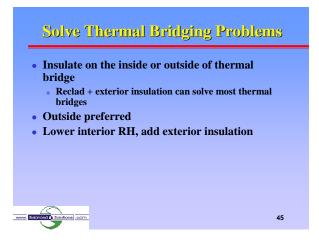
• Buildability / Inspectability

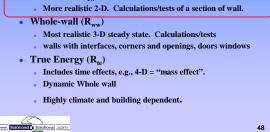
<u>do you</u> get what you spec/design?

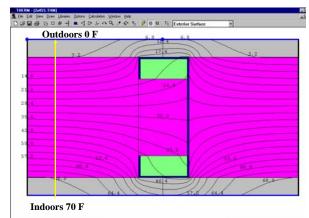


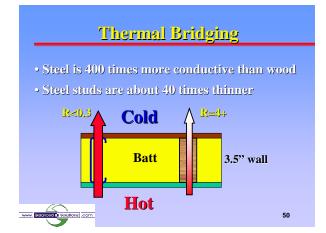
But it's More Than Insulation!

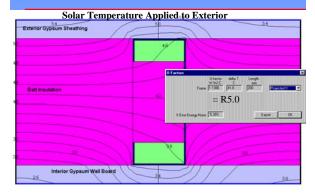

- Thermal bridges provide shortcut for heat through insulation
- Heat passes through the structural members
- Common offenders
 - Floor and balcony slabs
 - Shear walls
 - Window frames
 - Steel studs

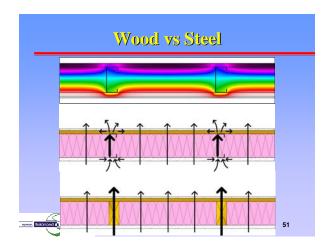

43

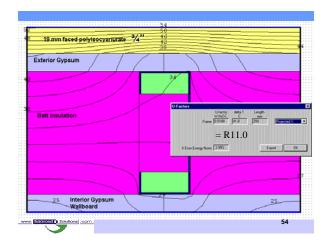

Thermal Bridging: Common Problems

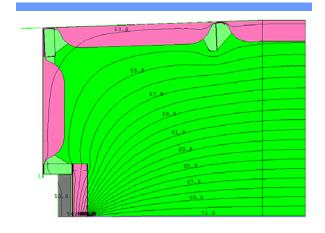


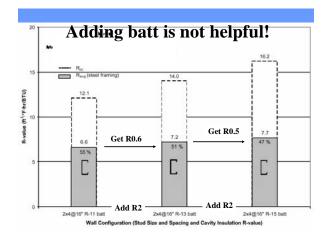

Different Types of R-values Center-of studspace (R_{cs}) Typical value given. Calculated between framing members Clear-wall (R_{cw})



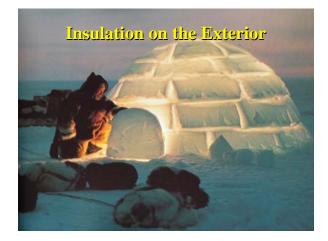


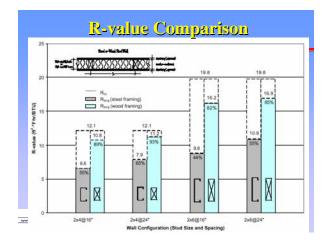

0 220 4 201 doubt 4 10 A 114 Jun 2 200 Kine 0 204 Junior unb 1 317 0 000

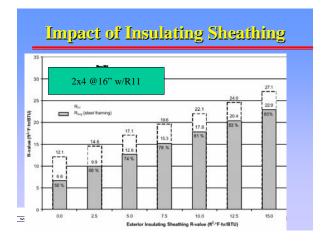


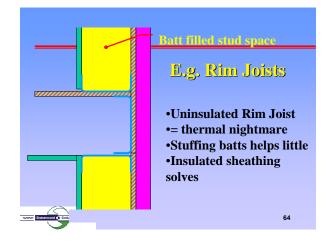

Therm can calculate 2-D values - Free!

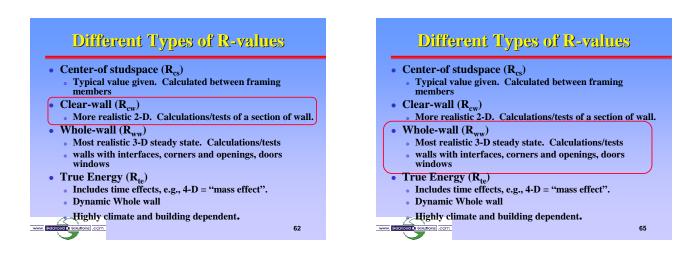








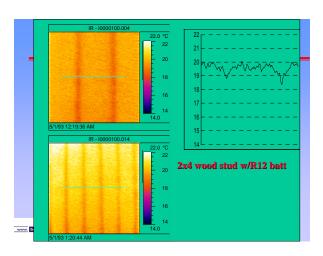




Data Sources Da

Typical R-values						
		nter of avity	Clear wall	Whole wall		
Wall Description	R _{imagine}	R _{cc}	R _{cw}	R _{ww}		
3.5" SS@16 o.c. R12	12-13	12	7.4	6.1		
3.5" SS@16 o.c. R12 + 1" EPS	16-18	16	11.8	9.5		
2x6 WS@24 in. o.c., R19 batt	20	19	16.4	13.7		
2x4 WS@16 in o.c., R12 batt	12-13	12	10.6	9.6		
EPS block forms	15.2	15.2	15.2	15.7		
Stressed Skin 6" core	25	25	24.7	21.6		
With information from	Oak Ria	lge Nati	ional La	bs 68		

Codes and R-values


- Implications: traditional framed walls have usually over-reported R-values
- ASHRAE 90.1 uses clear-wall *plus* mass effect
- Most local codes do not consider this

True energy equivalent R-values will vary with climate and building type, but *consumption will always be lower for walls with thermal mass*, and lowest for walls with thermal mass on the inside.

- Airflow and thermal bridges make it complex
- Radiation is poorly understood and may be important for certain applications

71
