

Outline of Presentation

- Indoor Air Quality
 - What is it
- Mould, Moisture, and Temperature
- ✓ Surface Humidity
- Interior Moisture Loads
- ✓ Air barriers, rain control, plumbing

© John Straube 200

Fungi & Buildings

- We often make buildings of dead plants
- sustainableinexpensive and plentiful
- Fungi and termites have evolved to eat dead plants
- Dust mites eat the dust we produce (skin remnants, etc)
- We have a conflict of interest

IAQ

- Indoor Air Quality
- Particulates
- Small particles of 1 to 10 microns
- Smoke (candles) animal dander, dead mites and mold spores
- Airborne toxins
 - Mycotoxins
 - Volatile organic compounds
- Airborne bacteria and viruses
 - Require high humidity for long life

Fungi

- 1.5 million types -- only 400 cause disease
- ✓ fungi = mould + yeasts
- 🗶 No photosynthesis
- Why avoid mould?
 - 1. staining
 - 2. illness spores, mycotoxins, VOCs
 - 3. decay

Mold

Mold growth requires all of:

1. Spores,

- 2. temperature,
- 3. nutrients,
- 4. moisture
- Can't avoid 1, hard to avoid 2 or 3.
- Therefore, control moisture!
- Use radiation, alkalinity, biocides

Other effects

- Airborne bacteria and viruses survive longer in high humidity
 - Cadillac fever, humidifier fever
 - Legionnaires disease
- Low RH / moisture content can stress
 - respiratory tract (infection)
 - Requires very low RH
- Some off gasing increases with higher humidity

Moisture

Where does all the moisture come from?

- Water vapor (indoors and out)
- condensation

Rain penetration

- Windows
- Roofs
- basements

Plumbing leaks

- Washing machines, water connections
- HVAC
 - Condensation in pans, humidifiers

Surface Condensation

High interior humidity and low surface temps = high humidity

Wetting - Sources & Mechanisms

- 1. Interior and Exterior Air (Vapour)
- by diffusion and air leakage (convection)
- 2. Driving Rain (Liquid)
 - by absorption ("wicking") and rain penetration
- 3. Soil Moisture (vapour & liquid)

 by diffusion, absorption and liquid penetration
- 4. Built-in Moisture (solid, liquid, vapour)
- not transported *stored* in masonry/concrete, green lumber, cellulose insul, construction rain/snow

Interior RH	Condensation Temperature	Temperature @80%RH
20	-2 / 29	1 / 33
40	8 / 46	<u>11 / 52</u>
50	11/52	14/57
60	14 / 57	17 / 63
80	18 / 64	22 / 72

Internal Moisture Loads

- Mould grows well inside because it is always warm and no sun
- Interior mould is closer to occupants
- Hence, beware interior surfaces and hidden but connected spaces
- Keep interior spaces dry!

Major Sources of Interior Moisture

- Cocupant Activity
 - Total for Family of 4: 5 to 20 kg/day (11 to 44 pds per day)
- Wet basements and crawlspaces
- Major source of liquid and vapor
- Leaky plumbing
 - Water source
 - Blown hoses

Sources of Moisture Within Buildings		
Source	Strength kg per day	
People - evaporation per person	0.75 (sedate) to 5 (heavy work)	
Humidifier	2-20+	
Hot tub, Whirlpool	2-20+	
Firewood, per cord		
Washing floors, counters, etc.	0.2	
Dishwashing		Total family
Cooking for four	0.9 to 2 (3 with gas range)*	
Defrosting (frost free) Fridge		of four:
Typical bathing/washing per person	0.2 to 0.4*	3 - 21
Shower (ea)		7 – 90
Bath (ea)	0.1+	nds/day
Uncovered Crawlspace		1
Unvented Gas Appliance (ea)		
Seasonal Desorption	3-8 depends on the type of construction	
Plants/Pets	0.2 - 0.5 (five small plants or one dog)	
Total (Typical Family of 4)	About 10, but potential ranges 3 to 40	© John Straube 2003

Interior Humidity

- Fewer air changes = higher interior humidity
- More moisture production = higher interior humidity
- More airtight construction = interior RH is more sensitive to moisture production rate
 Solution: Controlled Ventilation

© John Straube 2003

Within Wall/Roof Wetting

- Rain Absorption
 Rain Penetration
 Water Vapour

 Diffusion
- ii) Convection
- 4. Splash/ Wicking (from ground)
- 5. Plumbing Leaks

Interior Humidity

- Interior humidity arehigher in summer and spring/fall than winter
- But ... interior surface temperatures lowest in winter
- Insufficient ventilation *will* encourage mould growth in many cases

Rain Control

- Often largest source of moisture
- A large topic in its own right
- Maintenance and repair important
- Jse overhangs, drips, etc.
- Usually causes mould inside enclosure
- Solar driven vapour can cause *interior* wetting

Air Barrier Systems

- Air barrier systems (ABS) control air flow
 ABS prevent air leakage condensation
- Not the same function as vapor barriers
 vapor barriers rarely important
- Interior air barriers protect occupants from mould growth within the enclosure
- A good ABS requires careful detailing
- "Build Tight, Ventilate Right"

Solutions

- Materials are not a simple answer
- But, paper-faced gypsum and ceiling tiles can not be allowed to get wet!
- Painted concrete block, plaster, exposed ceilings are *definitely* more moisture tolerant

Solutions

- Control humidity: ventilation /dehumidification
 - Keep RH under 60% all the time in hot
 - Keep RH under 40% in winter (25% in cold)
- ***** Provide *timely* maintenance and repair
 - all leaks and disaster
- Accept that plumbing leaks can happen and design to tolerate
 - Disaster pans, accessible plumbing

Vinyl wallpaper in hot-humid

Conclusions

- Mould Control = Moisture Control
- Moisture Control includes
 - interior humidity
 - rain penetration
 - plumbing leaks
 - maintenance activities
- Choose materials for expected conditions
- Controlled ventilation and drying is important