Applied Computer Modeling for Building Engineering

Dr John F. Straube Dupont Young Professor Dept of Civil Engineering & School of Architecture University of Waterloo Ontario, Canada jfstraube@uwaterloo.ca 519 888 4015

© John Straube 200

Modeling for fun and profit

- Predict and understand temperature and moisture condition in & on bldg enclosure
- Avoid design errors
- Understand problems
- Aid the design of repairs
- Development of new systems/products
- Develop understanding of performance (teach)

© John Straube 2005

What and for Whom?

This presentation deals with design & analysis uses

Requirements

- Vary with Need, Time available, expertise
- Geometry (topology)
- Boundary Conditions (operating conditions)
- Material Properties
- Physics
- Performance Thresholds

What to Model Heat Flow (Energy) Temperatures Air Energy Contaminant transport Moisture

- Durability, mold
- Light

© John Straube 2005

Fire

© John Straube 2005

12/87

Interior Air at 22 C Surface temperatures cannot be less than:		
Interior RH	Condensation Temperature	Temperature @80%RH
20	-2	1
40	8	11
50	11	14
60	14	17
vaterioo 80	18	22
		© John Straube 200

Psych Chart: Air Vapour Content vs Temperature 100° AL Temperature 3500 = vapour pressure (Pa, in Hg), humidity ratio (g/kg, grains/pd) 15000 Air Moisture Content 3000 Saturation 500/0FH ²⁵⁰⁰ 🗑 2000 2000 J Inode A 25% RH 1000 100%RH 500 100% RH 75% RH 50% RH -10 °C 0°C 10 °C 20 °C 30 °C 40 °C -5.0 5.0 15.0 25.0 35.0 14 º F 32 ° F 50 ° F imperature (°C 68 ° F 86 º F 104º F

- Metal building system
- Condensation and Dripping?

Add ³/₄" insulation block
 Zero risk
 Now – other building details

Two-Dimensional Dynamic

- Thermally Massive Systems
 - Energy
 - Surface condensation
- Blocon Heat2 v4.0 (USD320 www.blocon.se)

© John Straube 2005

Physibel- Sectra (www.physiblel.be)

Case Study: Sub-slab insulation below Radiant Heating

Question: Does the use of radiant floor heating change the normal rules of thumb regarding sub-slab insulation? Approach: Dynamic 2- Heat flow model

Boundary Conditions

High thermal lag allows large time steps to be practicalCreated synthetic but representative "climate" file

Material Properties

- Soil properties are both poorly known <u>and</u> important to the results
- Hence parametric study

Soil Description	Conductivity (W/mK)	Heat Capacity (MJ/m ³ K)
Dry Sandy Loam	0.70	1.50
Moist Clay	1.50	1.65
Wet Sand	2.30	1.80
arrico		
*	36 / 87	© John Straube 20

Heat loss compared

