Applied Computer Modeling
for Building Engineering

Dr John F. Straube
Dupont Young Professor
Dept of Civil Engineering & School of Architecture

University of Waterloo
Ontario, Canada

jfstraube@uwaterloo.ca
519 888 4015

© John Straube 2005

The Building System

o
Iy

| .y
I. HVAC 44‘

Energy Pollutants, Waste, Energy | Energy
Resources

1 — —

Resources \ Pollutants

Pollutants Waste
Activity

© John Straube 2005

Overview

Why Modeling?
Heat Flow
Therm / Frame
Heat 2D / Heat 3D
Case studies

Heat & Moisture
WUFI-ORNL & Validation
Case studies

Fire Energy and Lighting
Summary
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Modeling for fun and profit

Predict and understand temperature and
moisture condition in & on bldg enclosure

Avoid design errors

Understand problems

Aid the design of repairs
Development of new systems/products

Develop understanding of performance
(teach)
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What are “Models”

By definition, an approximation of reality

Typically a model is designed for a particular

purpose,

e.g. calculate energy

As simple as
Q=U AT

—

Q(t) = U AT (t)

As complex as full building dynamic simulation
including occupant behaviour, plant, controls, etc.
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Structural Engineering

Idealized
Model

Physics:
Statics, MODS

Material
Properties

Performance
Thresholds
Structural Design
.
Analysis Process
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What and for Whom?

This presentation deals with design & analysis uses

Hygrothermal Analysis
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Who Engineers, Architects, Code officials Trainers, scientists
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“Building Science” Engineering

Idealized Performance
Model Thresholds
Physics:

Material science,
Thermodynamics

Mathematics H-A-M: P Design
Analysis Process
Material
Environmental
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Problem / Need

Building the “Model”
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Surface
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Requirements

Vary with Need, Time available, expertise

Geometry (topology)

Boundary Conditions (operating conditions)
Material Properties

Physics

Performance Thresholds
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The Process

Conditions

What to Model

Heat
Flow (Energy)
Temperatures
Air
Energy
Contaminant transport
Moisture
Durability, mold
Light
Fire
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Heat Flow

Steady-state or Dynamic

steady-state -- for average conditions or for
lightweight construction

Dynamic -- to assess thermal mass, transient
conditions

One- Two- or Three-dimensional
Free Tools
Use Therm or Frame

Both 2-D steady-state
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Wall Temperatures and RH

Poor insulation
= cold surface
= high RH

Vapour /RH =80%
Pressure

or
Air
moisture
content

RH=50%

Temperature
Temperature (C) Profile
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Thermal Bridging

Why calculate?
Heat Loss calculations

Surface Condensation
dust marking
mould
windows

Interstitial Condensation
2-D steady state is easy
2-D dynamic acceptable
3-D is time consuming
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Interior Air at 22 C

Surface temperatures cannot be less than:

Interior RH Condensation Temperature
Temperature @380%RH

20 -2 |

40 8 11
S0 11 14
60 14 17
80 18 %
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Two-D Steady-state

indows are
ually

Frame (www.enermodal.com) o[

Therm (windows.lbl.gov/software/therm)
Free, downloadable
Can use AutoCad templates
Primary intent -- window energy calculations
Can do much more

Interior Air: 21.5 C
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Color Legend

-200° 1480 85 43 10° 43 1157 1687 220° C
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Example of a wooden window -
“Infra-Red scan”

Infra-Red Photos

From inside a building at 22 C
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Steel Framing

Metal Building Systems and Steel Studs
Can be Thermal Bridges

Consume Energy
cause dust marking

Surface condensation

How much/little insulation is needed?
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Mixing Models

One model or modeling approach
e.g.Temperature flow, combined with dewpoint

“suite of models”
range of complexity/accuracy
range of expertise required
Case Study Major manufacturing plant

High interior humidity for film production
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Psych Chart: Air Vapour Content vs Temperature
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Case Study- Rec. Complex

Metal building system
Condensation and Dripping?
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Two-Dimensional Dynamic

Thermally Massive Systems
Energy
Surface condensation

Blocon - Heat2 v4.0 (USD320 www.blocon.se)
Physibel- Sectra (www.physiblel.be)
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Add %” insulation block
Zero risk
Now — other building details

Case Study: Sub-slab insulation
below Radiant Heating

Question: Does the use of radiant floor heating change the
normal rules of thumb regarding sub-slab insulation?
Approach: Dynamic 2- Heat flow model

2.1 m below grade At grade



Case study

Uses Heat2

range of soil types and conductivity

Apply heat in each tube

Control upward flux to be the same in both
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Radiant Floor Heat Input

Based radiant tubes heat output on weekly average outdoor
temperature to balance conductive/air leakage losses
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Boundary Conditions

High thermal lag allows large time steps to be practical
Created synthetic but representative “climate” file

= Simulated Temperature
—=—Toronto

—o— Calgary

Temperature (C)

Days from June 21st Straube 2005

Material Properties

Soil properties are both poorly known and
important to the results

Hence — parametric study

Soil Description Conductivity  Heat Capacity
(W/mK) (MJ/m3 K)

Dry Sandy Loam 0.70 1.50
Moist Clay 1.50 1.65
Wet Sand 2.30 1.80
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Heat loss compared Three-Dimensional Heat Flow

3.0 ——heulstsd, RS A1 Steady-state: systems with complex shapes

a5 | —Urinstlaed point thermal bridges, ties, connections

Dynamic: thermally massive complex
2.0

Savings: as above but thermal mass, fires, foundations
15 1 28.2 kWh/m2/yr

Rarely require this detail -- easier to be clever

4.0 1 Commercial Tools
Physibel Voltra (dynamic) Trisco (static)
Blocon Heat3 (both USD520)

00 ' ‘ ' ' ' Heat 7.2 (ORNL - not really commercial)
150 240 300 360 420 480 B0

0.5 4

Heat loss (I(Whlim2 week)

Days From January 1st
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