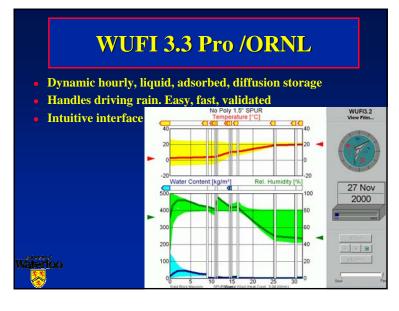


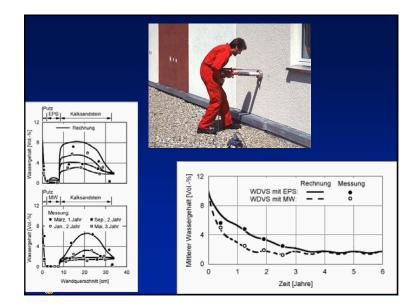
Moisture Models

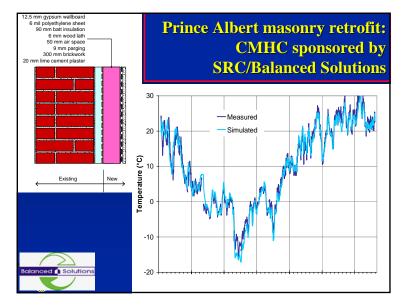
- Spreadsheet
 - Static, approximate
- EMPTIED from CMHC
 - simple, fast, approximate, air leakage potential
 - gross approximation of storage, drainage
- MATCH from TIL Denmark
 - commercial, offers most of WUFI benefits
 - clunky interface
- WUFI from IBP and ORNL

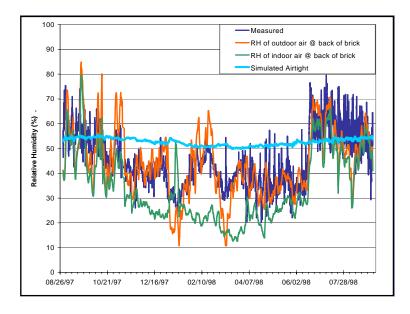
aterico • Very robust, good interface, powerful

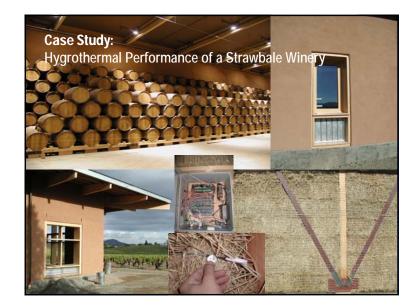
© John Straube 2005

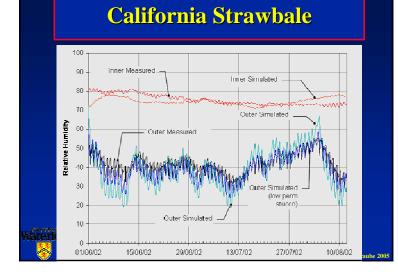

Moisture Models

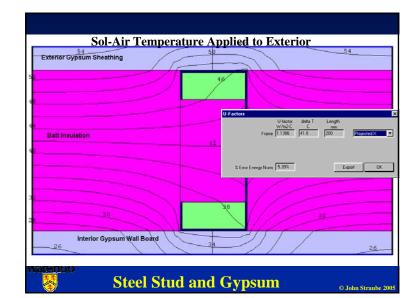

- Vapour diffusion easy to model
- "Hygric mass" often requires transient models
- Temperature and moisture are coupled!
- Challenges
 - Liquid transport is difficult
 - Moisture properties poorly known
 - Boundary conditions poorly known

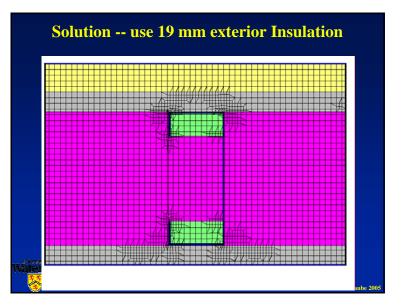



Results	Glaser Method						
Compare competing wall designs		P _{sat} RH					
Conduct parametric studies	21.0 990 Inside Film 0.120 1.8 10000 0.000 2	2474 40					
• How high MC? For how long?	19.2 988 Vapour retarder 0.000 0.0 60 0.017 344	2212 45					
Interpretation is difficult, e.g.,		2212 2					
No gain year over year	-18.4 633	143 44					
Freeze-thaw cycles when over 90% saturation	Plywood 0.012 0.2 40 0.025 517 -18.6 117	141 8					
 Hours or days over 80% or 95% RH 	Outside Film 0.029 0.4 20000 0.000 1 -19.0 115	136 85					
Mold models		130 00					
Annual plots	Element of						
Source thresholds O John Strau	2005 6 / 87	© John Straube					

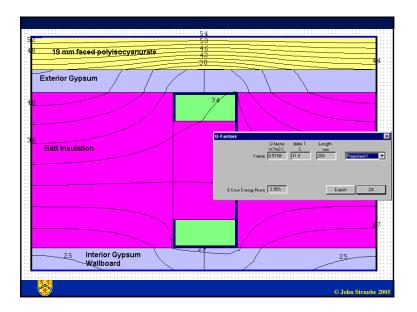

Element.		· -	± 00		Du	4 D		Deet	DU
Element	R	ΔT	t °C	М	Rv	ΔP	P	Psat	RH
Inside Film	0.120	1.1	21.0	10000	0.000	3	990		40%
Vapour retarder	0.000	0.0	19.9	60	0.017	506	987	2307	43%
batt	2.500	23.5	19.9		0.001	15	481	2307	21%
			-3.6				465	465	100%
				Flow T	o back	of she	athing	I	
			Perm	eance:	57.9		Pre	essure:	524
			F	low to:	30369	ng/m2 :	S =	0.11	g/m2/h
plywood	0.012	0.1		40	0.025	81			
Outside Film	0.029	0.3	-3.7	20000	0 000	1	385	462	83%
	0.020	0.0	-4.0		0.000	•	384	452	85%
Total Resistance	2.66	23.9			0	603			
			Flow Away from back of sheathing						
			Dorm	eance:	40		Pre	essure:	81

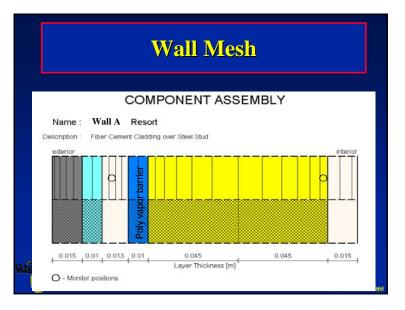


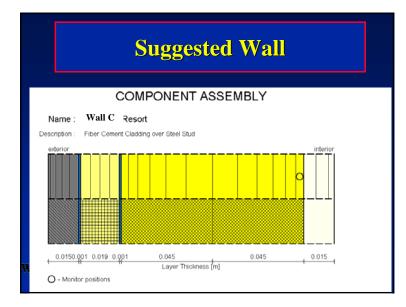


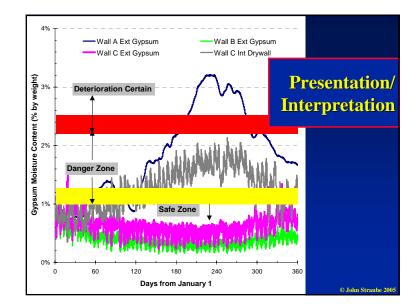

Case Study - Cuban Resort

• Canadian firm in hot humid climate

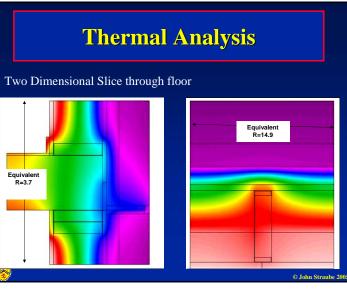

Questions:

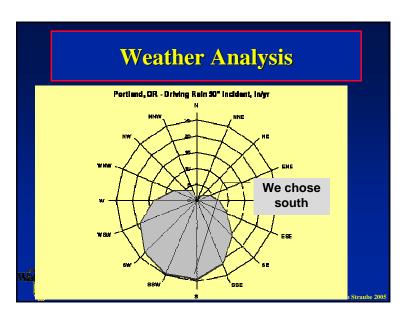

- **•** Do we need an exterior vapor barrier?
- Does wall meet the design specs?
 - U < 1, RSI >1 (Rimp > 5.6)

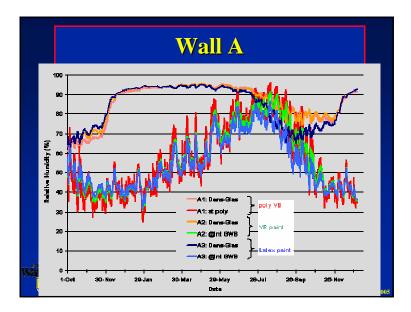


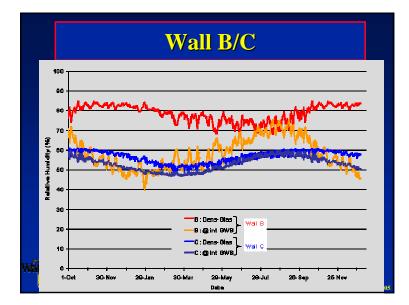


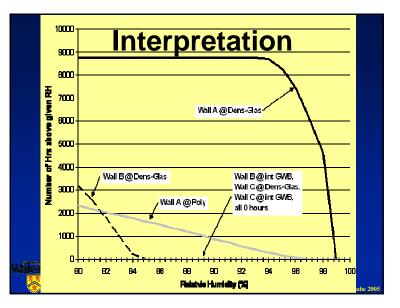
14 / 87

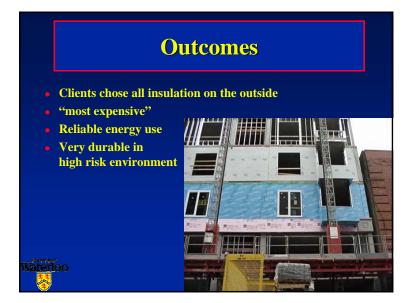



	The	rmal Re	sults		
		es into 3-D est performs poorl			
Wall Type	Wall Type @ Stud		Total Effective		
Wall A	1.3	0.70	1.2	R6.8	
Wall B	2.6	2.2	2.5	R14.2	
Wall C	2.3	2.3	2.3	R13.0	
inerth at					
terico		25 / 87		© John Stra	

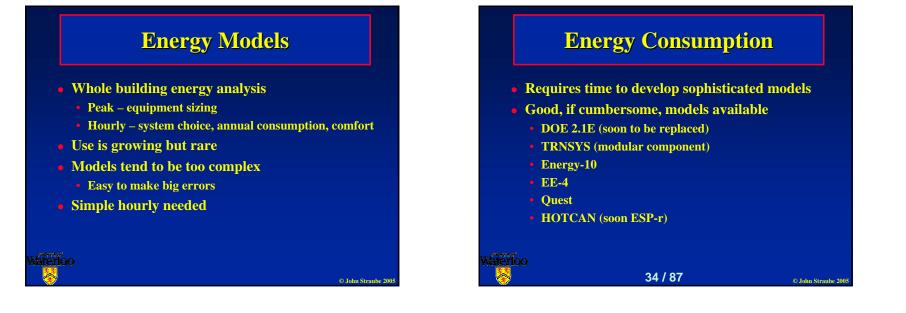

Moisture Analysis


- Durability (corrosion) and mold are key concerns
- Poly VR or not?

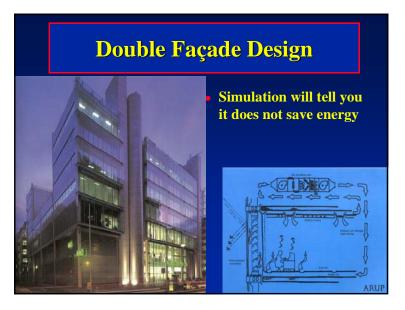

Xaterioo


- Winter condensation on exterior sheathing
- Summer condensation interior
- First decide which orientation requires detailed analysis
- North has coldest temps. West has highest. Rain?

Sustainability

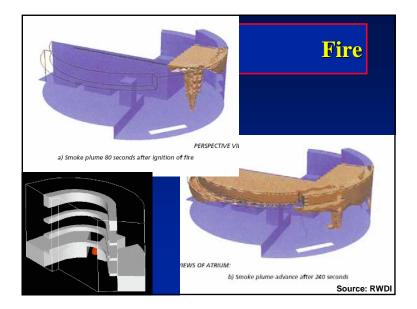

- Reduce the consumption of non-renewable resources
- Architects need to make different choices during all stages of design

32/87


© John Straube 2005

• Simulation allows different choices to be quantitatively assessed

a,


Vaterioo

Fire

- Important enough for large buildings to model
- Atria, novel fire suppression, tunnels, subways, etc
- Advanced CFD modeling requires specialists
- Can model crowds and evacuation, in for example, stadia

Lighting

- Influence well-being, sales, energy-consumption, etc
- Radiance, by LBNL is the product of choice
- Powerful, free(!),
- Desktop version Integrated with AutoCad
- Requires time to model 3-D
- Incredible rendering possible, but effort ...

39/87

Conclusions

- Simulation have/will become more powerful
- But will designers use the tools?
 - Need to have lower barriers to entry
 - Architects must work with simulators such specialization cannot be standard architect role
- Basic tools not used by practioners need more interest, more effort, more education
- Simpler tools at concept level "close enough"