Stress – Strain Relationships

Where l_0 = original length, l_i = instantaneous length under the load

Shear Stress

Shear Stress
$$\tau = \frac{1}{A}$$

Where F=shear force, A_0 = original cross-sectional area

Shear Strain

Shear Strain
$$\gamma = \tan \theta = \frac{W}{l_o}$$

Where w and l_o are shown on the diagram

areo = Ao

Types of Stress-Strain Relations

Elastic Material Behaviour

- Strain depends on the magnitude of applied stress and the internal structure of the material
- Hooke's Law (1678)"as the extension, so the force"

stress (
$$\sigma$$
) α strain (ϵ)

$$\sigma = E\varepsilon$$

Where E =Modulus of Elasticity or Young's Modulus (slope of the elastic region of the σ - ϵ curve)

E depends on the type of material

- Deformation in which stress is proportional to strain is referred to as Elastic Behaviour of the material
- The greater the value of E, the stiffer the material, or the smaller the elastic strain under an applied stress.
- Elastic Deformation is <u>not permanent</u>. When the applied load is released, the material returns to its original shape.

Shear Stress-Strain

> For elastic material, it is similar to Hooke's Law

$$\tau = G\gamma$$

Where τ = shear stress, γ = shear strain, G = Shear Modulus

Metal/Alloy	E (GPa)	G (GPa)	Poisson's Ratio (v)
Aluminum	69	25	0.33
Copper	110	46	0.34
Steel	207	83	0.30
Tungsten	407	160	0.28

Physical Basis for E

Material is an assembly of atoms in a stable configuration

Slope of F vs. γ curve at γ_o

$$S_o = \left(\frac{dF}{d\gamma}\right)_{\gamma = \gamma}$$

For small values of γ near the equilibrium, force required to move an atom to distance γ is given as

$$F = S_o(\gamma - \gamma_o) \quad \text{(Linear Behaviour)}$$

Force per unit area, i.e., stress, $\sigma = \frac{F}{\gamma_o^2}$
Such that $\sigma = \frac{S_o}{\gamma_o^2}(\gamma - \gamma_o)$

Such that

$$\sigma = \frac{S_o}{\gamma_o} \left[\frac{(\gamma - \gamma_o)}{\gamma_o} \right], \text{ where } \left[\frac{(\gamma - \gamma_o)}{\gamma_o} \right] \text{ is equal to strain}$$

$$\sigma = \frac{S_o}{\gamma_o} E$$
[Compare with $\sigma = E\varepsilon$]
$$-\frac{S_o}{2}$$

E =This means

> E is a measure of the resistance of separation of adjacent atoms

 γ_o

 \blacktriangleright E primarily depends on the slops (S_o) of F vs. γ relation at equilibrium spacing γ_0 (ideal behaviour)

Non-Linear Elasticity

- Stress is a not-linear function of strain
- Loading and unloading pasts are the same
- No-permanent deformation after unloading

Elastoplastic Behaviour

- > Non-linear σ - ϵ relation
- Permanent deformation (ε_o) after unloading
- ► Eg. Metals at high stresses

Anelasticity

Up to this point, elastic deformation of a stressed material is consider to be timeindependent

20

- In some materials, strain continues to increase with time when subject to a constant stress. The time dependant elastic behaviour is called ANELASTICITY
- ➢ Eg. Polymers

٤