Mackenzie River delta North of Inuvik




Bennet Dam — Williston Lake



Peace River west of Fort St. John — Halfway River Junction
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Halfway River junction




Peel River -- Wernecke Mountains (?)
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Nahoni Range -- Peel River -- Wernecke Mountains




Dempster Highway — through Richardson Mountains??




Peel River crossing near Fort McPherson




Mackenzie River ferry at Arctic Red River



Modelling objectives for WATFLOOD™

Flood forecasting and flood studies
Continuous modelling — climate change impacts

Ability to model very large as well as small
domains

Ability to optimally use gridded data sources e.g..
Land cover, DEM’s, NWP model output, Radar
data

Universally applicable parameter set (maybe)
Quick turn around (for a distributed model)
Ability to model a wide variety of landscapes




On choosing a model:

* You would choose WATFLOOQOD if its particular capabilities
are advantageous —e.g.:

— Highly spatially variable radar of numerical weather model
input

— Climate change scenarios

— Modelling ungauged basins

— Modelling very large regions

— Calibration/validation with point state variable data e.g. SWE

— Isotope model (only watershed O'8 & 2H model in existence!!)

— Extensive wetland/bank storage

— Intricate hydraulics (lakes & reservoirs)
— Pre & Post Processor: GreenKenue



Distributed vs. Lumped models

With WATFLOOD the measurable quantities for each
cell are:

e Bankfull cross sectional area

e Channel slope

e QOverland slope

e Cell elevations (min,mean,max)

* Channel classification

e Channel length (in grid)

e Cell connectivity (channel or lake routing)

* % area of each hydrologically similar land cover
(GRU)

e \Water & wetland areas




Distributed vs. Lumped models
(cont’d)

For lumped models all these measurable
quantities are combined into watershed

parameters which vary with the watershed’s

makeup of the measurable quantities and are
optimized.

For distributed models, each of these measurable
characteristics are explicitly incorporated — thus
parameters are not “watershed based”

PRO: Distributed models should be better at
predicting flow from ungauged watersheds

CON: There is a cost: Distributed models are more
difficult to calibrate and have longer execution time.




WATFLOOD Features

e Watflood is a DISTRIBUTED model (Gridded & GRU)

e Grouped response units (GRU’s): will lead to
universal parameter set

e Gridded model:

— optimal use of remotely sensed data
— optimal use of numerical weather data

— optimal use of 1,2 and 3D display facilities (e.g.
GreenKenue™)

 Tracer & Isotope model

In WATFLOOD we ignore connectivity at the small scale (within cell)



History

1972 MNR Ontario. Original idea was to have a gridded model to coupled with weather
radar — no one else interested, EC data not free

Gridded model turned out to be easily and optimally interfaced with remotely sensed
land cover data - GRU’s developed in 1985

Early 1988’s Env. Can. became interested — set up radar interface 1992

1993-1998 BC Hydro dam safety study with Numerical Weather Model MC2/WATFLOOD

1999 Mesoscale Alpine Project (MAP): MC2/WATFLOOD real-time flow forecast
experiment.  WATFLOOD used to validate MC2 precip forecast.

2004 - 2008 development continued for ensemble forecasting

— ]\CNATFLO)OD modified to fully integrate with Green Kenue (ENSIM) (common file
ormats

— Great Lakes model
— Mackenzie river forecast model — coupled to RiverlD
2008 Manitoba Hydro adopts WATFLOOD for climate change study & planning

2012 -2014 MH, OMNR, LWCB, OPG implementing flow forecasting with WATFLOOD &
Numerical Weather forecasts



Previous Uses:

 Flow forecasting (1972) — original intent, only now being implemented
 C(Climate change impacts

 Land use change impacts

 Numerical weather model validation (i.e. watershed = precip gauge)

e Dam safety



e GRU'’s

e need
e [Imitations



It is Impossible to transfer any
but the simplest parameters
form one watershed to another
(e.g. area, slope, shape,
vegetation, channel character
all different)

It just seems way more
reasonable to define
parameters based on land
cover & topography — i.e things
you can measure



* Itis our contention that the use of land cover based
parameters makes the model much more robust for modelling
ungauged watersheds (see better validation errors in the ASCE

paper)



Model setup & calibration

e GreenKenue™ (GK) for model setup
— Few decisions
e (main one: cell size)
e Number of land covers to model seperately
e Coding lakes
e Coupled wetland proportion

* Pre-processors for HYDAT, WISKI, etc. data files
— GK format files for WATFLOOD



Hydrology Hydraulics

Group Response Unit Physically Based
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Flow Routing Between Grid Elements
showing Grouped Response Units
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Parameters are for land cover classes
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Parameters do not change with
percentage of each land cover

Each cell is represented by a
watershed with its own cover allocation.

% cover can
change over
time !l!




WATFLOOD™
Hydrological Model
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Schematic of the Infiltration Process
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Each cell has these attributes:

*Cells are numbered from upstream to the outlet (highest to lowest
elevation)

Evapotranspiration, Snow Melt, Runoff and Recharqge is
computed for each land cover class in each cell = GRU method

*Runoff is routed to the stream-coupled wetland and then to the
stream channel or lake in each grid

Channel & Lake flows are routed from cell to cell in downstream
direction:

*Channel routing: with KW & Manning’s n

*Coded Lake routing: with releases or storage-discharge
function

*Un-coded lakes: wide channels to preserve water area in each
cell and to dampen flow raised Manning’s n prop’l to water area




Modularity

e separate programming units for:
— Setup

 Watershed representation: GreenKenue™
* Event generation

e Point data to distributed data conversion for meteorological inputs

(distance weighting with radius of influence, damping coefficient &
lapse rates OR user supplied)

— Hydrology/Routing: WATFLOOD™
— Parameter fitting: DDS

— Post processing: GreenKenue™, Grapher™, Surfer™,
Excel™, etc.

— Statistical analysis of output: Excel™, other stats
software



Interfacing with other models (flavours)

e Gridded model allows 1 to 1 matching of runoff units to
meteorological driving data from NWM (eg. EC’s GEM)

 Gridded surface model allows 1 to 1 matching of recharge to
groundwater model such as MODFLOW

e Computed river inflows can be accumulated on a reach by reach
basis for input to an internal Lake routing module or be written to a
file in a format compatible with routing models such as DWOPER,
Flow1D, River1lD, TELEMAC or some other application (e.g. ice jam
model).

e Grid outflow computed with any model can be routed with
WATROUTE (a subset of WATFLOOD Code)



Scaling/Domain Size

e WATFLOOD has been used with cell sizes from 1 to 25 km (scale) and for
watershed areas from 15 to 1,700,000 km”2 (domain)

e WATFLOOD is not sensitive to cell size as long as there are a sufficient
number of cells to maintain the integrity of the drainage system and
preserve the variability in the meteorological data

e Regional model: models multiple watersheds (WATFLOOD cannot be
properly calibrated with one or two flow stations)




Routing features

«Storage routing (center difference
KW solution with variable time steps
to satisfy Courant criteria
everywhere)

*Coupled stream-wetland routing
model

sLake routing, reservoir operating
rules & diversions

*Overbank flow (with different
resistance coefficients)

*River, Lake and groundwater
initialization based on recession
curve of observed hydrographs.



Assumed Channel Section

10H:1V 10H:1V
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e Fieldwork is still required to confirm assumed
section

e Channel & overbank roughness separately set



Channel Cross-Section - Drainage Area
Relationship

Channel Bankful
X-sect Area, XA (m 2)

XA = a(DA)P

Drainage Area, DA (km?)




Wetland/Bank Storage Model

coded by Trish Stadnyk
based on PhD by Bob McKillop

BOREAS NSA Fen Site:




Near Mor_den, Manitoba

Bank'sto_rage Is very important here
as it is where most water is lost to

evapotranspiration




Wetland model schematic

evaporation

precipitation (gqswrain) evaporation (gswevp) orecipitation (glos
(gstream
_a 5
interflow t
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baseflow (qlz)



Does the model
work?

i.e. does it model nature?



Physical hydrological reasonableness:

 Where possible, time series of state
variables are compared to observed data
(e.g. SWE, lake levels, GW levels, soil
moisture, O.

* All model components have been
individually verified
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SWE estimates
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Modelled SWE (mm)
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1200

Comparison of observed
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River basin.
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Upper Zone Storage (UZS) in mm

100 =

Field data provided by Joachim Gurtz & Massimiliano Zappa
Analysis by Shari Carlaw

Claro: Crops (grass) Class

precip
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Evaporation (mm/hour)
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Evaporation (mm/hour)
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WATF LO O D Tra Ce rS (Trish Stadnyk’s stuff)

Tracer 0 Tracer 1 Tracer 2

Sub-basin separation Glacier melt separation Land-cover separation

Tracer 3

Rain-on-stream tracer

Tracer 100

Baseflow separation

Tracer 4 Tracer 5

Flow separation Flow & Snow-melt

surface surface + surface melt
interflow interflow + melt drainage
baseflow baseflow + interflow melt drainage




Flow (cms)
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880 (per mille)

Isotopic Variation in Streamflow Measured 30

Fort Simpson, NWT
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An isotope fractionation model has
been embedded in WATFLOOD so 60
can be calculated and compared to
observed 6180 (also 6%H now)

The isotope signature is affected by the
proportion that water is or is not
exposed to evaporation as 02 is not
evaporated at the same rate as O1°

If computed and observed 680 are
close, it ensures that the model’s mass
balance is ok and that the GW portion
of the flow is correct.

The WSC is collecting water samples for
isotope analysis so this data can be

used for modelling in the future.

This is a 4 year pilot project 2013-2017



Other checks can be made:

* frequency analysis of observed & computed data can be compared
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 You can NEVER-EVER eliminate
errors of computed flows due to
the areal variability of

e You can reduce errors by
Improving the representation of
the watershed (e.g. landcover/soll
based gru’s)

and

 Model improvement (e.g. lapse
rates, lake evaporation, etc.)
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Annual Precipitation mm -- Mackenzie
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Nation River -- Observed Annual Mean flow cms
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Annual Precipitation mm -- Mackenzie
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Annual Precipitation mm -- Norma Wells
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Annual Precipitation mm -- Norma Wells

SOUTH NAHANNI RIVER ABOVE VIRGINIA FALLS -- Observed Annual Mean flow cms
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Annual Precipitation mm -- Yellowknife
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This should serve to lower expectations a bit!

Coffee maybe?



