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ABSTRACT 
The research presented in this paper analyzes and updates an existing incremental pavement 
deterioration model, which was originally developed based on data from the AASHO Road Test. 
Material and structural properties, environmental effects and traffic loading, the three main major 
factors dominating the characteristic of pavement performance, are incorporated into the model.  

 When panel data are available from large field experiments, due to the limited number of 
variables that can be controlled and observed, unobserved heterogeneity is almost inevitable. 
Most of the existing models did not fully account for the heterogeneity issue. During this 
research, focus is placed on the heterogeneity of the individual model parameters. For this 
purpose, the Bayesian approach is adopted for its ability to address the issue of interest. Unlike 
most traditional model estimation approaches based on sampling techniques and normality 
assumption, the Bayesian approach aims to obtain realistic parameter distributions through a 
combination of existing knowledge (prior) and updated information from the data collected. The 
Gibbs sampling algorithm with Monte Carlo Markov Chain (MCMC) simulation is applied to 
estimate parameter distributions.  

 It was found that there is significant variability in the parameters. Hence the need exists 
to address heterogeneity in modeling pavement performance. Furthermore, it is shown that not 
all estimated parameters are normally distributed as commonly assumed. It is therefore suggested 
that the performance model developed in this research provides a more realistic forecast than 
most previous models. In addition, pavement deterioration forecast based on the Gibbs output is 
performed at different percentile levels with varying inspection frequencies, which can enhance 
the decision-making process in pavement management.  

 In general, the Bayesian approach presented in this paper provides an effective and 
flexible alternative for model updating, which can be applied to both the data from road test sites 
and other data sources of interest.  
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INTRODUCTION 
Pavement performance prediction plays a central role in highway infrastructure system design 
and management. Performance can be expressed in terms of distresses including rutting, 
cracking, and roughness. It can also be evaluated through subjective indicators such as the 
present serviceability rating (PSR) as established by AASHO during the Road Test (HRB, 1962).  

 To-date, much effort has been given to developing state-of-the-art pavement performance 
models to address the deterioration process. Basically, either the empirical or mechanistic 
approach, or the two approaches combined, is utilized for performance modeling. For example, 
an empirical sigmoid curve was applied to fit the pavement deterioration process by Garcia-Diaz 
and Riggins (1984). A mechanistic approach was incorporated to develop the damage functions 
for rutting, fatigue cracking, and loss of pavement serviceability index (PSI) by Rauhut et al. 
(1983). After the World Bank road test in Brazil, Paterson (1987) established a series of 
empirical performance models on the basis of a comprehensive study of previous modeling 
efforts and the characteristic of the road test data. Currently, the most widely accepted model is 
the American Association of State Highway Transportation Officials (AASHTO) design 
equation (AASHTO, 1993).  

 In addition, in terms of model format, both linear and nonlinear models were examined in 
the previous studies. The nonlinear models were found to be more appropriate for determining 
deterioration due to traffic and environmental impacts. However, many of the nonlinear models 
lack physical explanation, statistical soundness, or are not suitable for the deterioration process. 
These problems have been improved through the development of the nonlinear model with panel 
data (Archilla, 2000; Archilla and Madanat, 2001; Prozzi, 2001; Prozzi and Madanat, 2003). In 
such cases, heterogeneity not previously observed across the pavement sections was captured by 
the intercept term by means of random-effect models, while it is assumed that the other 
parameters were fixed. Although this approach produces efficient parameter estimates, 
heterogeneity is not entirely captured. Pavement performance heterogeneity should potentially be 
reflected not only through the intercept but through the regression parameters. Hence, it is more 
reasonable to relax the above assumption and let the parameters be random (random parameters 
model), since each section may possess unique characteristics affecting the deterioration process. 
The tradeoff of adopting more flexible model is the need for additional computational effort. 
Even for the random-effect nonlinear model, the process of searching for an iterative solution 
under Generalized Least Square (GLS) is time-consuming. However, an optimum solution is not 
guaranteed. It can be expected that the computational work required for a random parameter 
nonlinear model is more demanding. As an alternative, this paper will describe how the Bayesian 
approach can be applied to effectively address the issue. 

 The Bayesian approach offers the flexibility to incorporate existing knowledge so that 
previous experience can be utilized rather than ignored (Zellner, 1971).  In addition, obtaining 
the distribution of the parameters as random variables to reflect the performance heterogeneity 
(the main objective of this study) is straightforward, and the output is the density function, which 
can provide comprehensive statistics of the individual parameters.  

 The following section describes the proposed incremental pavement deterioration model. 
Section 3 presents the Bayesian approach to estimating the specified model. The Gibbs sampling 
technique is utilized to estimate the distribution of each parameter. In addition, the performance 
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forecast procedure is examined based on Gibbs output and an illustrative example is given. The 
final section presents study conclusions and major findings.  

 

MODEL SPECIFICATION 

AASHO Model 
Based on the experimental data from the AASHO Road Test, a state-of-the-art pavement 
performance model was established (HRB 1962), as is shown in Equation 1: 

( )
α

ρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−−= Wpppp ft 00   (1) 

Where 
tp : serviceability at time t 

0p : serviceability at time t = 0, i.e. initial serviceability 

fp : terminal serviceability 
W: accumulated axle load repetitions until time t 
ρ : accumulated axle load repetitions until failure 
α : regression parameter determining the curvature of performance model 

 The deficiency of the model was identified with regard to determining ρ  and α  in both 
specification and parameter estimation aspects (Rauhut et al., 1983; Prozzi and Madanat, 2000). 
Consequently, an improved model is adopted by considering the factors affecting pavement 
performance, in particular those factors involving pavement structures, environment, and traffic.  

 Since the performance deterioration trend is described by the AASHO model, it can be 
utilized as the basis for an improved model; thus the proposed model is formed from the AASHO 
equation: 

( ) µµ +−=+= c
ttt bNaNfp  (2) 

Where 
tp : serviceability at time t 

tN : some measure of traffic until time t 
µ : error term 
a : parameter representing initial serviceability 
b : parameter representing the deterioration rate 
c : parameter representing the curvature 

 

Improved Model Specification 
The deterioration of pavement is dependent on the combined impact of traffic load and 
environment on the pavement system. Therefore, as a sound model, Equation 2 should 
incorporate these relevant variables. Since traffic load is directly included in the term tN , the 
remainder of the variables (environment and pavement-related input) are incorporated in the term 
b .  
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 As proposed in the original AASHO model, the thickness index 3322111 HHH γγγ +++  
denotes the contribution of each pavement layer to the resistance of the deterioration, where 1γ , 

2γ , and 3γ  are the parameters of each pavement layer that denote the relative capability of the 
individual layer to support the traffic. The three layers are surface, base, and subbase with 
thicknesses of 1H , 2H , and 3H , respectively. The term “1” did not have a physical meaning, but 
it is used to avoid the possible mathematic indetermination when the thickness index is equal to 
zero since it appears in the denominator of the function for α  (HRB, 1962). In the current 
model, a different form is proposed to make the specification physically meaningful. This is 
based on the assumption that pavement performance deterioration rate will decrease with the 
increase in the pavement structural strength and vice versa. Consequently, the contribution to the 
resistance of deterioration from the pavement structural strength is depicted as: 

{ } { }332211expexp HHHbS γγγλ ++=  (3) 

 The implication is that 1γ , 2γ , and 3γ  will be expected with negative signs. Except for 
the three thickness items reflecting the pavement surface layer, base, and subbase, it is shown 
that Equation 3 includes one multiplicative term { }λexp . The reason for adding this term is to 
consider the contribution of the subgrade. Physically, { }λexp denotes the pavement deterioration 
rate due to first unit of traffic applied directly on top of the subgrade.  

 Environmental impact on pavement performance is another critical aspect since pavement 
is sensitive to temperature and moisture, which is not directly reflected in the AASHO model. It 
was found that the most significant environmental factor influencing pavement performance is 
the frost penetration gradient (Prozzi, 2001). The frost penetration gradient, denoted as tG , is 
defined as the ratio between the change of frost penetration depth during period t and the length 
of time. Hence, the environmental factor, denoted as Eb , is: 

}exp{ tE Gb ϕ=  (4) 

Where  
ϕ : parameter to be estimated 

 Intuitively, during the thawing period, with the drop in the frost penetration depth (i.e., 
negative gradient), the serviceability loss will accelerate due to the sudden loss of base and 
subbase strength. Thus, the sign of ϕ  is expected to be negative so that during this period tGϕ  
will be larger than zero leading to Eb  being larger than one, which implies more serviceability 
loss.  

 For the complete form, an incremental model is adopted. The benefits of using an 
incremental model to forecast the next-period serviceability loss are:  

1. from the infrastructure management context, the one-period-forward (next-period) 
performance forecast is usually adopted in decision-making, allowing for the adjustment 
of the schedule plan based on actual performance data; and  

2. only next-period traffic is included while traffic from the previous traffic levels have 
already been obtained.  
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Based on previous research (Archilla, 2000; Prozzi, 2001), the first order Taylor expansion on 
Equation 2 based on the one-period-forward performance condition is: 

ε+∆=−=∆ −− NdNppp e
tttt 11                (5) 

Where 
d , e : parameters to be estimated 

1−tN : some measure of accumulative traffic until the one-period backward of time t 
N∆ : projected incremental traffic during the time period between t-1 and t 

ε : error term 

 The determination of d  follows. From the first order Taylor expansion, it is shown that 
d  (Equation 5) is equal to b  multiplied by c  (Equation 2). b  encompasses both the structural 
factor Sb  and environmental factor Eb . In addition, considering the sign of c  should be 
nonnegative, it is integrated with { }λexp  as { }'exp λ . Hence, the denotation of d  becomes:  

{ } { } { }tGHHHd ϕγγγλ expexpexp 332211
' ++=       (6) 

 Consequently, the incremental model representing serviceability loss at certain pavement 
sections can be expressed in the full specification as: 
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Where 
itp∆ :  serviceability loss in pavement section i  during time period t  

80 ~ ββ : parameters to be estimated 

iH1 :  surface layer thickness at pavement section i  

iH 2 :  base layer thickness at pavement section i  

iH 3 :  subbase layer thickness at pavement section i  

tG :  frost penetration gradient at time period t 

1, −tiN :  cumulative traffic until the one-period backward of time t 

ilN∆ :  incremental traffic during the time period between l-1 and l 

itε :  error term 

iln :  traffic volume during the time period between l-1 and l 

iFA :  front axle load magnitude 

iSA :  single axle load magnitude 

iTA :  tandem axle load magnitude 

iA :  number of single axles on one vehicle 
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iB :  number of tandem axles on one vehicle 

 Three types of axle configurations were applied during the AASHO Road Test: front 
steering axles (single axle with single wheels), single axle with dual wheels, and tandem axles 
with dual wheels. It is assumed that the impact on pavement performance with each pass of axle 
load can be converted into an equivalent value based on its configuration and magnitude. The 
standard load for single axle with dual wheels is 18 kips (80 kN), while two coefficients 6β  and 

7β  are assigned for obtaining the standard loads of the front axle and tandem axles, respectively. 

 

MODEL ESTIMATION THROUGH BAYESIAN APPROACH 

Equation 7 is nonlinear in the parameters. To capture the unobserved heterogeneity of pavement 
performance, the parameters are regarded as random variables across the different pavement 
sections. It will be shown that the Bayesian approach with MCMC simulation is remarkably 
powerful for estimating the statistics of these variables. Bayesian inference combines the 
information from observed data with prior knowledge about the parameters (prior) to arrive at 
the updated distribution of the parameters (posterior) (Zellner, 1971), which is described as: 

( ) ( ) ( )
( ) ( )

( ) ( )θθ
θθθ

θθ
θ pYXp

dpYXp

pYXp
YXp ,

,

,
, ∝=

∫
           (10) 

Where  
( )YXp ,θ  denotes the posterior distribution of the set of parameters θ  given the observed data 

including X  (explanatory variables) and Y (dependent variable)  
θ  consists of the regression parameters and the parameters for the error term in Equation 7 

( )θYXp ,  denotes the likelihood of the observed data given the parameters θ  
( )θp  denotes the prior distribution of the parameter set θ  

 Due to the integral in the denominator (i.e. total probability across the parameter space 
being a constant), the posterior can be written as proportional to the numerator, the multiplication 
of likelihood and prior distribution, as shown in the right-hand side of Equation 10.  

 

The Prior Specification 
Customarily, it can be assumed that the prior distributions of the regression parameters are 
independently and normally distributed (Gelfand et al., 1990). The prior distribution for the 
regression parameters in the proposed model specification (see Equations 7, 8, 9), 

[ ]T
876543210 ,,,,,,,, ββββββββββ =  can be denoted as:   

( )Λ,~ uN ββ  

Where  
uβ  is the mean of the parameters, denoted as [ ]T

uuuuuuuuu 876543210 ,,,,,,,, βββββββββ .  

Λ  is the variance-covariance matrix of parameter vector β .  
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 When determining the statistics for the prior, previous research results are used as the 
learned knowledge on the issue of interest. However, if there is no existing information 
available, an estimate based on the authors’ judgment is proposed.  

First, the mean values of prior parameters are established. A prior mean of 0β  = -1 is assumed, 
corresponding to the value of “1” in the denominator of α  in the AASHO equation. For 1β , 2β , 
and 3β , according to the AASHO equation, the three parameters -0.44, -0.14, and -0.11, 
respectively are used as the prior means. For 4β , using the information in Prozzi (2001), an 
estimated value is proposed as -0.1 for prior mean of 4β . For 5β , a similar estimate was made 
based on Prozzi’s findings so that the prior mean is assumed to be -0.5. Since 6β  is used to 
convert the steering axle load into the equivalent load of a single axle with dual wheels, 18 kip 
(80 kN), its prior mean is assumed to be 0.5. Following similar reasoning, the prior mean for 7β  
is assumed to be 2.0 since it is the case for the tandem axle. For 8β , considering the “4th power 
law” was used in estimating the load pavement impact (Huang, 2003), the prior mean is assumed 
to be 4.0. In summary, the prior means for the parameters are chosen as: 

[ ]T
u 4,2,5.0,5.0,1.0,11.0,14.0,44.0,1 −−−−−−=β  

 Second, concerning the uncertainty of each parameter, the concept of precision is applied. 
In Bayesian approach, the precision — denoted as τ  — is customarily defined as the reciprocal 

of variance, namely, 2

1
σ

τ = . It should be noted that varying precision levels may result in 

different posterior distributions. Hence, three representative precisions are selected in this study 
to examine the sensitivity of the posterior distribution to different assumptions on prior 
precisions. The first alternative adopts relatively smaller precision, 0.1, corresponding to the 
higher uncertainty of the parameters. The second alternative uses relatively larger precision, 1, 
corresponding to the lower uncertainty. When choosing the third precision alternative, it is 
assumed that before the study the parameter of variance (CoV) for each parameter is 1 (i.e., 

1/ =µσ ). In addition, the error term itε  is also assumed to be independently and normally 
distributed, 

),0(~ ηε Nit  

Where 
η  is the precision of the error term distribution. Considering that the majority of the model’s 
uncertainty is incorporated in the error term and little is known about it before the study, the 
error term’s precision is further reflected by a gamma distribution: 

),(~ ςφη gamma  
Where  
φ ,ς : the parameters of the gamma distribution of η  

 As a result, by assuming that the priors are independent, the prior joint distribution 
including all the parameters is obtained as: 
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Where 
kk ,τ : the kk,  element of matrix 1−Λ , which is the precision of the distribution of kβ  

η : the precision of the error term distribution 

 

The Likelihood Function 

As stated previously, the error term itε  is assumed to be independently and normally distributed. 
Hence, the likelihood function is:  

( ) ( )( )∏∏
= = ⎭

⎬
⎫

⎩
⎨
⎧ −∆⎟

⎠
⎞

⎜
⎝
⎛−=

n

i

T

t
itit

i

XgpYXp
1 1

2,
2

exp
2

, βη
π

ηθ  (12) 

Where 
n  is the number of pavement sections 

iT  is the number of time periods when data were collected on pavement section number i   

itp∆  is the observed serviceability loss during time period t on pavement section i  
η , as in Equation 11 

( ) ( ) ittitiiiitit NNGHHHXpEXg ∆++++=∆= −
5

1,43322110 }exp{,
β

ββββββ  

 

The Posterior 
With the prior and likelihood functions at hand, using Equation 10, the posterior is obtained as: 
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 As shown in the posterior distribution, there are ten parameters to be estimated. Although 
the joint distribution of the ten variables conditional on the given data is obtained, the goal is to 
arrive at the marginal distribution of each variable, which requires the multi-dimensional 
integration of the right-hand side of Equation 13. An alternative to avoid the complexity in 
obtaining the marginal distribution is available through the Gibbs sampler with MCMC 
simulation, which is presented in the following section. 

 

Implementation of the MCMC 
Gibbs sampling is a Markovian updating scheme (Gelfand and Smith, 1990). The process of the 
algorithm used in the Gibbs sampling is described as follows: for a set of random variables 1U , 

2U , …, mU , the joint distribution is denoted as ( )mUUUf ,...,, 21 . With given arbitrary starting 
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values of sU s
' , say )0(

1U , )0(
2U , …, )0(

mU , the first iteration of random draws of sU s
'  is 

obtained as: 

 )1(
1U  from ( ))0()0(

3
)0(

21 ,...,, mUUUUf  

)1(
2U  from ( ))0()0(

3
)1(

12 ,...,, mUUUUf  

M  
)1(

mU  from ( ))1(
1

)1(
2

)1(
1 ,...,, −mm UUUUf  

 In a similar manner, the second set of random draws of sUs
'  is obtained through the 

update process. After r  iterations as shown above, the series of sUs
'  is obtained as 

( ))()(
2

)(
1 ,...,, r

k
rr UUU . It is shown that under mild conditions for each variable 

( )ss
dr

s UfUU ~)( ⎯→⎯  as ∞→r  (Geman and Geman, 1984), which means that after enough 

iterations, r, , )(r
sU  can be regarded as a random draw from the distribution of ( )sUf .  

 Based on the above algorithm, the application of MCMC for obtaining the marginal 
distribution of each parameter conditional on observed data is straightforward. It is shown that 
the joint distribution by the given data set is available through the Bayesian approach, which is 
the posterior (Equation 13). With the joint conditional distribution of the parameter set, the 
MCMC simulation is carried out, leading to the simulated distribution of each parameter of 
interest.  

 

PARAMETER ESTIMATION RESULTS 
Through applying the modeling process and estimation methodology aforementioned to the 
AASHO Road test data, the basic sample statistics (mean and standard deviation) of the 
parameters are presented in Table 1. The statistics of each parameter are almost the same among 
the three precision levels. The results imply that the posterior is not significantly sensitive to the 
prior’s selected precision in this case.  

 As the representative, the parameter sets from the alternative level with prior precision 
equal to 1 are chosen for further analysis (it is similar for the remaining two). In addition to the 
means and standard deviations shown in Table 1, the following statistics are investigated in 
Table 2: 1) coefficient of variance (CoV), 2) skewness, and 3) kurtosis. Meanwhile, the densities 
of the various parameters are illustrated in Figure 1.  

 With regard to the parameters of three pavement thicknesses, it is shown that the largest 
mean relative performance deterioration resistance is denoted by - 1β  (0.485), followed by - 2β  
(0.157), and then - 3β  (0.153). This result follows the practice in pavement engineering that the 
surface layer contributes more to the resistance of serviceability loss than the base and subbase. 
Moreover, it is implied that the relative contribution of the surface layer’s unit thickness is 
around three times that of the base or subbase. The base and subbase are close in terms of their 
ability to resist serviceability loss. In addition, Table 2 shows that CoV of the base and subbase 
are close to each other, with the surface layer being slightly higher. Skewness and kurtosis values 
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of the three parameters being near 0 and 3, respectively, suggests that each of the distributions 
can be regarded as normal, which is also reflected in their densities as shown in Figure 1.  

 Other parameters deserving special attention are those associated with traffic information, 
6β , 7β , and 8β . 6β  and 7β  are the coefficients for estimating equivalent axle loads for the 

steering and tandem axles, respectively. The mean of 6β  equal to 0.686 means that the 
equivalent load for a steering axle is 12.3 kip (54.8 kN) on average, while 7β  equal to 2.229 
implies that a tandem axle load is 40.1 kip (178 kN). The larger CoV value of 6β  (24 percent) 
suggests that the equivalent damage estimation for steering axle load has a larger variability than 
that for the tandem axle load (CoV of 9 percent). In addition, both distributions are significantly 
asymmetric, as shown by their densities in Figure 1. Both positive skewness values indicate that 
the equivalent loads are more concentrated on lighter axle loads for the steering and tandem axle. 
The mode of 6β  equal to 0.511 implies that the most popular steering axle equivalent load is 9.2 
kip (40.8 kN), which differs significantly from the mean value. A similar result applies to the 
coefficient for determining the equivalent load for a tandem axle. Table 2 shows that the kurtosis 
values of 6β  and 7β  are larger than 3, particularly that for 7β , indicating that the distributions of 
the two parameters’ are more outlier-prone than the normal distribution. Therefore, the 
assumption of normality of the two parameters is not recommended. Regarding 8β , its mean 
value of 3.22 is different from its counterpart obtained in the analysis from the original AASHO 
Road Test, which is around 4. The result implies that by applying the “4th power law” the impact 
of heavy loads on pavement might be overestimated, while the impact of a light load is 
underestimated. Additionally, both skewness (close to 0) and kurtosis (close to 3) confirm the 
normal assumption of 8β  as in the traditional analysis.  

 For the remaining parameters, the statistics in Table 2 and the densities in Figure 1 
suggest they be symmetric and normal distributions.  

 

PAVEMENT PERFORMANCE FORECAST 
The ultimate goal for model estimation is to forecast pavement performance. As shown in the 
following paragraphs, performance forecast is a straightforward process. A simulation approach 
based on the random parameter variables obtained in Gibbs output is adopted to achieve the 
predicted pavement performance.  

 Let f
tnp ,1+∆  denote the serviceability loss of a pavement section number 1+n  (outside 

the observed n  samples) during the time period t  to be forecast, which is given by: 

tntntntnnn
f

tn NNGHHHp ,1,11,141,331,221,110,1
5}exp{ ++−+++++ +∆++++=∆ εβββββ

β

       (14) 

Where, the explanatory variables are known for the pavement section of interest and the 
parameters are from the post-convergence of the Gibbs output. The error term is assumed 
random draw obtained from simulated errors of the Gibbs output.   

 In order to obtain the forecast serviceability loss for each time period, Monte Carlo 
simulation is again carried out as follows: 
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1. Obtain one set of random draws of β , denoted as )(kβ , from the post-convergence Gibbs 

output, plug them into Equation 14 and calculate )(
,1

kf
tnp +∆ , which has the normal 

density: 

( )( ))()(
1,1

)(
,1 ,,~ kk

ntn
kf

tn XgNp τβ+++∆             (15) 

Where 
1+nX  is the vector of explanatory variables from the pavement section 1+n  to be 

forecast, )(kτ  is the precision. 

2. Obtain one random draw from the density of )(
,1

kf
tnp +∆  

3. Repeat steps (1) and (2) to obtain a total of K  values.  

4. Calculate the statistics of the forecast serviceability loss based on the sample of K  
random values obtained in steps (1), (2) and (3). For example, the predicted mean of 
serviceability loss can be estimated through the sample mean: 

 ( ) ∑ = +++ ∆=∆ K

k
kf

tnn
f

tn p
K

DataXpE
1

)(
,11,1

1,            (16) 

 
A Case Study of Performance Forecast 
To illustrate the effectiveness of the model, pavement section 271 from the AASHO Road Test is 
selected, a replicate section that was not used during the development and estimation of the 
model.  

 The serviceability loss at each time period is calculated to arrive at the performance 
deterioration curve. Figure 2 represents the forecast deterioration curve by simulated mean 
values at time points along the road test duration. It is demonstrated that the forecast line fits the 
observations accurately.  

 From a pavement management perspective, one-period-forward performance 
deterioration forecast is of prime interest. In general, pavement condition data are collected on a 
regular basis at frequencies determined by the highway agency based on resource availability. 
Thus, pavement performance forecasts between two data collection intervals are required for 
decision-making. To illustrate the effect of survey frequency and prediction confidence, six 
possible scenarios are presented as a case study: 1) Pavement condition survey frequency: every 
two years, once a year, and every six months, and 2) Prediction confidence: 50 and 60 percentile.
 The performance forecast in the first interval is based on the initial condition and that for 
the second interval is based on the observed PSI at the beginning of that interval. The percentile-
based incremental performance forecast results for the three groups of scenarios with increasing 
frequency are depicted in Figures 3, 4, and 5, respectively. The observed performance curve lies 
close to the 50-percentile lines. In addition, figures indicate that as the confidence level increases 
(higher percentile), forecast performance drops significantly, which leads to a profound 
implication for reliability-based pavement design. The reliability obtained from the median 
performance forecast line corresponds to the condition 50 percent of system reliability. The 10-
percent increase in reliability level can be obtained but results in a significant drop in forecast 
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PSI. Moreover, it is implied that with an increase in inspection frequency, the forecast variation 
decreases, leading to more confidence in the performance forecast. Therefore, it is implied that 
the balance between accurate performance forecast and inspection frequency is of critical 
importance in order to realize optimal highway infrastructure system management. Figures 3 
through 5 indicate that, when all sources of uncertainty are properly accounted for, aiming at 
higher reliability levels (such as 90 percent or 95 percent) may be unrealistic. In-depth research 
into determining appropriate and realistic reliability levels as a function of inspection frequency 
(function of available resources at the highway agency) is imperative.     

 

CONCLUSIONS 
An incremental pavement deterioration model was investigated in this paper based on the 
AASHO Road Test data. The model accounts for the fundamental factors associated with 
pavement performance: structural properties, environment, and traffic.  

 The Bayesian approach is used to update the model parameters. The purpose is to assess 
the effects of unobserved heterogeneity on pavement performance model parameters by 
exploring the characteristic of the variability of parameters. The parameter information from 
previous studies and the authors’ understanding of the deterioration process are used as the prior. 
The posterior is obtained by updating the prior with the observed data and reflects the 
characteristics of the actual deterioration process. The Gibbs sampling technique is used to 
estimate the distributions of the individual parameters. Through the application of this 
methodology and based on the critical analysis of the model and the prediction results, the 
following results should be considered: 

1. The model was developed in an attempt to capture the physical process of deterioration 
and the estimated results match data and the validation set accurately. The relative 
magnitudes are also consistent with previous research.  

2. The normality assumptions seem reasonable for most parameters with the exception of 
6β  and 7β , which are used for calculating the equivalent axle load for steering and 

tandem axle, respectively.  

3. The parameter 22.38 =β  is slightly lower than the counterpart in the “4th power law” 
obtained after the original analysis of the AASHO Road Test data, which suggests that 
the impact of heavier loads (>18 kips) on the pavement is currently overestimated, while 
the impact of the lighter axle loads is underestimated.  

4. Their standard deviations and CoV show that there is significant variability in the 
individual parameters. This means that the model is subject to uncertainty through the 
variability of the parameters, leading to the heterogeneity of the pavement performance 
across sections. Consequently, it implies that addressing unobserved heterogeneity in 
pavement performance is a critical issue in modeling.  

 In addition, the Gibbs output is used for predicting the pavement performance. As an 
advantage of the incremental model, pavement performance forecast at a given interval 
(corresponding to the inspection frequency) can be obtained. Furthermore, the varying 
percentiles of performance forecast are presented, which can aid the decision-making process 
based on the confidence in the forecast variables.  
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 Following the philosophy of Bayesian updating, the research approach presented in this 
paper can be applied to enhance the current model as new data is collected. With the collected 
data from different sources (such as Pavement Management Systems), the results obtained herein 
can serve as the prior. After integrating with the new data through the approach presented in this 
paper, the updated model can be used to facilitate pavement management at particular locations 
of interest.  
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Table 1.  Estimation Results at Three Prior Precision Levels 
Precision τ = 0.1 τ = 1 CoV=1 

Parameters Mean StdDev. Mean StdDev. Mean StdDev. 

0β  -5.781 0.029 -5.432 0.028 -5.457 0.027 

1β  -0.454 0.044 -0.485 0.044 -0.479 0.048 

2β  -0.157 0.015 -0.157 0.016 -0.157 0.016 

3β  -0.151 0.014 -0.153 0.014 -0.151 0.014 

4β  -0.117 0.006 -0.121 0.006 -0.120 0.006 

5β  -0.244 0.031 -0.265 0.030 -0.265 0.028 

6β  0.723 0.172 0.686 0.168 0.768 0.259 

7β  2.164 0.125 2.229 0.190 2.220 0.228 

8β  3.030 0.238 3.222 0.238 3.167 0.241 
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Table 2.  Statistics on Variability of Parameters and Normality Check 

Parameters CoV Skewness Kurtosis 

0β  -0.01 0.026 2.78 

1β  -0.09 0.038 2.91 

2β  -0.10 0.030 3.11 

3β  -0.09 -0.012 3.00 

4β  -0.05 -0.128 2.99 

5β  -0.11 0.113 2.79 

6β  0.24 1.15 4.65 

7β  0.09 2.04 12.0 

8β  0.07 0.089 2.99 
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Figure 1.  The Densities of Estimated Parameters 
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Figure 2.  Observed versus Forecast Mean Performance Curves on Section not Used in 
Model Estimation Sample 
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Figure 3.  Observed versus Forecast Performance at Different Percentile Levels with an 
Inspection Frequency of Once Every Two Years 
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Figure 4.  Observed versus Forecast Performance at Different Percentile Levels with an 
Inspection Frequency of Once per Year 
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Figure 5.  Observed versus Forecast Performance at Different Percentile Levels with an 
Inspection Frequency of Once per 6 Months 
 
 
 


