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How do water-repellents work?
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Moisture Balance

* air convection

‘ Condensation
* vapor diffusio

v

Rain
*absorption

*penetration

-

kg

Wall Wetting Mechanisms

1. Rain Absorption
splash and drips

2. Water Vapour
i) Diffusion

ii) Convection

(air leaks)

3. Built in Moisture

4. Wicking

(from ground)
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Water Repellents

e Water repellents reduce wetting from rain
absorption by creating an exterior
hydrophobic surface

e They may also reduce drying
e Do they reduce wetting more than drying?
e Need measured properties to answer this

Lté: John Straube

Types of Sealant/Waterproofing

Penetrating Sealers| Sealers Coatings Membranes

Pore lining
Pore blocking,
film forming
Bonded
TUnbonded

Increasing molecular size

and solids content
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How do Water-repellents work?

Repellents make surfaces hydrophobic

e hydrophobic surfaces have contact angle greater than 90
degrees

e Treatments either changes the surface layer of molecules
or provide a coating that has a hydrophobic surface

&< 90° &> 90°

%tgrm normal material: hydrophobically treated:
Lg;, “wettable” “non-wettable”

How do Water-repellents work?

e Significant pressures needed to push water into
hydrophobic cracks

e E.g. typical repellent
0.3 mm crack requires 370 Pa
0.1 mm crack would requires > 1000 Pa of

hydrostat
water flowing -
 mxd in: system not no water flow
in eguilibrium
Uniueraity of
Waterloo normal, capillary hydrophobically
L%g, active material treated material
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Potential Problems with Impregnated

e Freeze-thaw
e Peeling coatings
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Moisture Movement

Muoisture Content

e If water gets to backside

g

\J
Evaporation

Liguid Flow

Untreated -

Maoisture: Content

I Drying Front

=W

c#p

=W,

Diffusion Liguid Flow

Waterioo Treated '
Lii’é' John Straube

Experimental Program

e Three Tests to compare/investigate performance

- Water-uptake test: Absorption
- Modified Wet-cup Test: Vapour Permeability
- Initial Drying Rate Test: Drying

%
L@;- John Straube
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" room temperature and |
humidity conditions

open container —\

Water
Absorption
Tests

sample

Maintain water level at the surface of the sample +3/-0 mm

water
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water pass through £
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Standard Wet & Dry Cup Tests

23°C/

23°C/

50% RH 50% RH
specimen specimen
water dessicant
=100% RH =0% RH

Tests as per ASTM E96

% John Straube
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Modified Wet Cup

e How well does vapor

pass through brick?
25°C/
" — 75% RH
_ 80 :
k) 70 Constant Mass Change Spec|men
g, 60+
S 50
S 40+
30 4
8 o0 water
= 0] =100% RH
0 ! ; . .
0 10 20 30 40 50
Time (days)
. \

Initial Rate of Drying Test

How well does liquid water pass trough
brick if wetted from backside?

Exposed Surface

Masonry Unit

Aluminum Tape Coated
With Parrafin Wax

Plastic Grid
Water Surface
Extruded Polystyrene
[—— e Plastic Enclosure Sealed
Waterloo With Aluminum Tape and
%] Coated With Parrafin Wax
3
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75% RH & 20 °C

Aluminum Frame—]

Sample

Aluminum Tape —]
Plastic Container—

Wire Mesh Rack—]

MaCL d
Balt Solution @ \\

Air Circulation >

Mioisture Comtent
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Time (hr)
Jonn Sraupe

Daughter Brick Vapour
Permeance Test Results

H1 19.1 16.2 15
H2 17.6 15.7 1
H3 12.7 9.2 27
L9 13.0 9.6 26
L10 16.8 17.6 (outlier)
P9 8.8 7.0 20
P10 13.3 6.4 51
Wateri®ermeability values measured in ng/m-s-Pa.
% John Straube
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Daughter Brick Initial Rate of Drying
Test Results

H1 680 584 14
H2 440 57 87
H3 201 46 77
L9 199 28 86
L10 528 118 78
P9 27 8 70
P10 125 37 70
Whigloo Permeability values r::;z::::d in ng/m-s-Pa.
4

Preliminary Findings

e Water-repellents reduced the absorption
by a factor of around 100!

e Vapour permeability of the entire brick
samples did not change significantly,

e but ... Drying rate of a treated sample is
greatly reduced

e Both due to low permeance of thin layer
and less capillary flow

EE]
L@-} John Straube
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Computer Modeling - WUFI
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Hygrothermal Computer Modeling of Impregnated
Brick and Brick Veneer Walls
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