

To VENTILATE or SEAL A SEATTLE FLAT ROOF ???

Kings County Housing Authority
Achilles Karagiozis
Dan Auer
Andre Desjarlais

Presentation Layout

 Developing Successful Building Retrofit Design for Low Slopped Roof in Seattle

Roof Investigation Approach

Simulate Retrofit Strategies Monitor
Retrofit for 1
year

Field Testing

Commonly Found in Seattle and Everywhere

Field Testing Worst Across the Street (Greener Neighboor) Local Recommended Solution: Ventilate MORE

Field Testing 20 years in Service

<u>↓</u> 0.5"

→ 6.25"

Proposed Retrofit Roof System

Simulation Series

Table 1: Roof Simulations											
Existing Roof I.C. at 90 % RH						Retrofit Roof I.C. at 90 % RH					
Case1	Case2	Case3	Case4	Case 5	Case 6	Case1	Case2	Case3	Case4	Case 5	Case6
0.001 ACH Exterior Ventilati on	0.001 Interior air leakage	0.01 ACH Exterior Ventilati on	0.01 Interior air leakage	1.0ACH Exterior Ventilation	1 Interior air leakage	0.001 ACH Exterior Ventilati on	0.001 Interior air leakage	0.01 ACH Exterior Ventilati on	0.01 Interior air leakage	1.0ACH Exterior Ventilation	1 Interior air leakage

Results

Figure 6: Performance of Existing Roof Sheathing as a function of low interior or exterior ventilation (O.001 and 0.1 ACH)

Results

Figure 7: Performance of Existing Roof Sheathing as a function of interior or exterior ventilation (O.5, 1, 5.0)

Results

Robust Design Forgiving Design Energy Efficient Design Durable Design

Membrane

AIR CAVIT

INSULATION

0.2

0.3 **X(m)**

FOAM INSULATION

Results (Existing)

Results (Retrofit)

Results (Retrofit)

Figure 22: Retrofitted Roof Relative Humidity Distribution at week 8 with ACH =10 EXTERIOR

Temperature Distribution

Figure 28 Retrofitted Roof Temperature Distribution week 8 at ACH=5 from the EXTERIOR

Retrofit Measured Results

 Lets look to see what is happening to Roof after the actual retrofit took place.....?

Was the model right ?

Lets look at the opening

at D

Measured Retrofit MC Distribution (Sheathing)

Measured Retrofit MC Distribution (Top Joist)

Measured Retrofit MC Distribution (Top Joist)

Summary

The retrofit ROOF resulted in DRY wood conditions

The model and measured retrofit data showed good predictive ability

.....Conclusions

- The existing roof system was found to be very sensitive to interior moisture loads especially air leakage.
- Net yearly accumulation in the sheathing board was found for the existing roof suggesting that the performance of such a roof should not be employed in climatic conditions as found in the greater Seattle area.
- The proposed retrofit roof was found to be less sensitive to climatic loads and interior load and provided enhanced drying potential.
- The proposed roof was found to be both more energy efficient and had a lower risk for moisture problems.
- Interior and exterior air ventilation did not display a strong dominating roof as found in the existing roof
- However exterior ventilation for the retrofitted system did increase diurnal moisture accumulation and soffit ventilation should be blocked.
- Elimination of roof membrane during the retrofit action was found not to increase the drying performance of the roof.