

Objectives

- This talk aims to
 - Develop awareness of curtainwall performance
 - appreciate impact of performance on bldg
 - differentiate between window features
 - understand variables in selection

Windows & Curtainwalls

- A major element in modern architecture
- Must apply the usual building enclosure design principles
 - Support, Control, Finish, Distribute
- Must also consider
 - Control of solar radiation and light
 - Allowance for ventilation

Curtainwalls

- ◆ Functions: Same as wall *plus* transparent and allow ventilation
 - not easy= hence expensive + compromise
- Structure transfer loads
- Rain control
- Heat control
- ◆ Airflow control tight / ventilation
- Solar control gain / reject

Performance Metrics • Heat Flow (R,U) • Condensation resistance (CRI) • Solar Heat Gain Coefficient (SHGC) • Visual Transmittance (VT) • Air Leakage (AL) • Water penetration

Controlling Sun Balance between Controlling solar heat gain (SHGC) Controlling light transmission (VT)

Solar Heat Gain Coefficient

- SHGC = Solar Heat Gain Coefficient = Fraction of solar radiation that passes
- Typical clear, dbl-glazed window SGHC = 0.72
- Higher SHGC?
 - Maybe small residential buildings in heating climate
- Low SHGC?
 - Commercial buildings
 - Buildings with large glazing ratios (large window/wall)
 - Buildings in cooling or mixed climate

Spectrally Selective Magic

- Reduced SHGC with a high VT
- Allows daylighting and view with low solar heat gain
- Tend to have good U-values
- Great choice for west/east view windows
- All directions in large commercial buildings

Balanc	ing S	& V7	
Glazing	VT	SHGC	LSG
Reflective blue-green	0.33	0.38	0.87
Film on clear glass	0.19	0.22	0.86
Green tinted, medium	0.75	0.69	1.09
Green low-e	0.71	0.49	1.45
Sun-control low-e + green	0.36	0.23	1.56
Super low-e + clear	0.71	0.40	1.77
Super low-e + green	0.60	0.30	2.00

Controlling Rain Penetration • Curtain leak internally (esp. at corners) • they leak at the interface with the wall • Therefore • Design and install using the drained approach

Performance Metrics

- Heat Flow (R,U)
- Condensation resistance (CRI)
- Solar Heat Gain Coefficient (SHGC)
- Visual Transmittance (VT)
- Air Leakage (AL)
- Water penetration

Conclusions

- Understand importance of windows to building performance
- Balance U, SHGC, and VT
- Design and build
 - draining frames, drained connections
 - air barrier continuity with walls
- Curtainwalls use less glass of better quality

