

Waterloo Goal • If we must build, build greener buildings Eventually, Buildings that use no net energy, enhance ecology, clean air and water - sustainable buildings in a sustainable community Future Renewable / bio-materials - Building systems that allow reuse/recycling • "Within one generation, nations can achieve a ten-fold increase in the efficiency with which they use energy, resources and other materials" 1997 Carnoules Statement to Government and Business Leaders is .com 20

What should we do?

- "Use energy & material more effectively both in production & operation of buildings while polluting & damaging ecology as little as possible"
- Follow this over the whole life-cycle
- Can we?

22

24

- Easy to reduce energy by 30% at no cost
- Easy to cut waste and consumption by more
- Major changes we can reduce by factors of up to 10!
- BUT, requires change/commitment at concept stage

John Straube

Waterloo

- System integration
 - "Professional specialization" disease
 - Sub-system optimization
 - Non-optimal whole system design
- Real benefits come as a system
 - Good windows = no perimeter heat/ cool
 - Airtight + good insulation can mean no furnace
 - shade and solar windows save AC costs, fans, and ducts
 - Reduced power = renewable energy economical

John Straube

Saving energy is not expensive

- e.g. Dupont, Lockheed, Shell, Suncor

John Straube

Building Science Corp (www.buildingscience.com)

Can often be CHEAPER!

31

• Hence, efficiency allow us to have our cake and east it Energy reductions after '73 / '79 • California brownouts(2001) - 12% cut in 6 months simply by citizen action John Straube Waterloo "I can't afford to" The Zero-sum Myth Myth: "It is not economical to save energy and reduce pollution" Fact: Median threshold for EE decisions 1.9 yr payback / 71% after-tax ROI (Dept of Energy) Finishes • Pollution inspection & control = expensive

Energy & Efficiency

- Warm home, not gas

- Light, not electricity

People want services not energy

Waterlo

Less resources, more resource US energy consumptio

000 Btu per 1996 dollar of GDP

1973

The System Cascade: Office Bldg

- E.g., reduce window solar heat gain so ...
- · cooling is reduced, so ...
- chiller, fans, and ducts are reduced, so ...
- smaller plenum space floor to floor and reduced square footage
- so you save capital and energy!
- Now repeat for lighting, equipment, ventilation loads. *Individual* cost benefit may not be positive, but system benefit is!

45

John Straube

Waterloo

Change resource use

- Renewable materials sustainably produced
 - Certified timber (low energy required)
- Recyclable materials with low energy use
 - Reuse wood and steel
 - Recycled steel uses about 70% of energy
- Both must not generate dangerous pollutants during their life cycle

47

John Straube

"Spin off" Benefits

- Better HVAC (e.g., 100% fresh air)
 better IAQ
- Daylighting and better indoor air quality (IAQ) increases productivity, sales, morale
- Less noise and drafts from over-taxed cooling systems
- More tolerant to power failures
- Passive energy (PV, wind, solar) is diffuse, so lower loads = economic viability

4

John Straube

Waterloo

Waterloo

Examples of Renewable Material

- Wood
 - Harvest sustainably
 - Improve fibre use
- Bamboo
 - Grows quickly, quite strong
- Other fibres
 - Hemp, cotton, flax, grass, straw, etc.
- Soil, earth, rock
 - intensive mining problems
- Natural polymers (e.g., starch)

John Straube

Waterlo **Examples of Renewable Energy** Biomass (including wood stoves) Particulate pollution, production intensity Photovoltaics **Embodied energy and pollution** All these Fuel cells? choices - Where is the hydrogen coming from? have Wind power **Ecosystem disruption** problems Hydroelectric Habitat destruction / disruption Conservation and Efficiency "negawatts", embodied energy required? John Straube

The Future Sustainable Office

- Practical Implementation example:
 - Limits glazing area to less than 50% of exterior
 - High R-value glazing <u>system</u> -- U < 1.0 W/m²/C (R>5)
 - Employs shading devices or low SHGC (<0.30) glass
 - Dimmable/controlled fluorescent lighting
 - 100% Outdoor supply air with ERV & dehumidification
 - Radiant cooling panels remove sensible heat
 - Optimal thermal mass
 - Embodied energy analysis of alternate designs
 minimum aluminum, plastics, stainless, steel, etc.
 - Off-gassing budget

64

- Tightly controls solar and internal gain
 reduce size of chiller and ducts, fans, pumps
- Reduces heat loss with high insulation levels
 - reduce boiler, avoid perimeter heat
- Is very airtight -- but provides plenty of fresh air
 control air quality
- Controls light levels based on sun / occupancy
 uses daylighting saves energy, improves comfort
- Uses heat and enthalpy recovery on fresh air
 - don't throw away what you bought

John Straube

Waterloo

Future

- Change will occur slowly and gradually
- Pollution is waste hence expensive
- Fossil fuels will not run out, but our ability to accept pollution will
- Buildings must be integrated into lifestyle, transportation, ecology
- Good design, rationally based, can save non-renewable resources, without pollution

 John Straube

The Future

- Paradigm shift from "least evil" to "as much good"
- Buildings must eventually
 - Produce energy
 - Clean air and water
 - Enhance local ecology
 - Reuse materials, low-damage recycle,

John Straube

Waterloo

79

Review-Strategies

- At concept stage
 - How will building be shaped, oriented
- Define real targets and track them
 - E.g. material quantities, energy use, VOC
- Assess major decisions in green terms
 - Curtainwall or punched windows
 - Metal roof or asphalt, carpet or concrete
- Involve consultants early and iteratively
 - Energy analysis? Day lighting studies?

John Straube

